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Abstract

The transition from high school to college is crucial for children’s later life outcomes,

yet little is known about the role of high school educational inputs in developing skills

relevant to college coursework. I estimate high school teacher value added on ACT

scores and evaluate the impacts of ACT score value added on college enrollment and

college performance using administrative data from North Carolina. I find that ACT

score value added varies substantially across 11th grade math and English teachers,

both within and across high schools. Exposure to teachers with high ACT score value

added increases on-time 4-year college enrollment and enrollment in selective 4-year

colleges, decreases 2-year college enrollment, and improves 4-year college performance.

A one standard deviation increase in math ACT score value added increases the like-

lihood of completing a 4-year college degree within 5 years of high school completion

by 8%. Increased 4-year college enrollment explains 68% of the total college comple-

tion effect, while increased enrollment in selective 4-year colleges with high completion

rates and improved college performance play smaller roles. My results suggest that

high school teachers have significant scope to influence the accumulation of college-

relevant skills.
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1 Introduction

The final years of high school are a crucial transition period in children’s lives. During this

period of late adolescence, children make the pivotal decisions of whether and where to at-

tend college, with well-documented implications for economic mobility (Chetty et al., 2017).

College choices are heavily influenced by students’ skill levels, which determine whether and

where students can attend college as well as their likelihood of success in college coursework.

Despite the importance of college choices for children’s later life outcomes and the wide di-

vergence in college choices across skill levels, little is known about the role of educational

inputs in shaping children’s skills during late adolescence.

In this paper, I study the role of high school teachers in the production of college-

relevant skills. Teachers are foundational for children’s development. Indeed, a large body

of literature documents the multifaceted effects of teachers during elementary and middle

school (Bacher-Hicks and Koedel, 2023), with a smaller body of evidence documenting the

role of high school teachers (e.g. Jackson, 2014, 2018). Yet, the impacts of teachers during

the pivotal college decision making years and the persistence of these impacts once students

enter college are not well understood.

I begin by estimating the impacts of 11th grade teachers on students’ 11th grade ACT

scores. My identification strategy leverages quasi-random assignment of teachers within high

schools, conditional on course choice, and I employ standard empirical Bayes estimation

methods from the teacher value added literature (Chetty et al., 2014a). I utilize detailed

administrative data on the universe of public high school students in North Carolina linked

with enrollment records from the University of North Carolina (UNC) System, which includes

all public 4-year colleges and universities in North Carolina and is among the largest public

university systems in the United States. In North Carolina, the ACT test is administered in

public high schools during the school day, free of charge, to all 11th grade students, allowing

me to estimate the impacts of teachers on students’ ACT scores without needing to account

for non-random selection into ACT-taking. State-level universal admissions testing policies

have rapidly increased in prevalence over the past two decades (Cook and Turner, 2019);

thus, the longitudinal data required to estimate teacher value added on college admissions
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test scores has not previously been available.

To obtain subject-specific estimates of ACT score value added, I estimate the impacts

of English teachers on English and reading ACT scores and the impacts of math teachers

on math ACT scores. I find that assignment to an English teacher with value added one

standard deviation above the mean increases English and reading ACT scores by 0.06 stan-

dard deviations. Assignment to a comparably skilled math teacher increases math ACT

scores by 0.08 standard deviations, approximately 0.5 points on the 36-point ACT test scale.

Estimated standard deviations of ACT score value added are similar in magnitude to prior

estimates of high school teacher value added (Jackson, 2014) and smaller in magnitude than

estimates of teacher value added in earlier grades (e.g. Chetty et al., 2014a), consistent with

dynamic complementarities in skill production and exposure to multiple teachers reducing

the scope for individual teachers to influence test score growth among older students.

Roughly two-thirds of the variance in ACT score value added is between schools, indi-

cating that high school assignment shapes, but does not fully determine, access to teacher

quality. Teachers’ race/ethnicity, gender, experience, and education predict only 1% of the

variation in value added estimates across teachers, consistent with prior literature finding

that value added is distinct from observable teacher qualifications (Bacher-Hicks and Koedel,

2023). Importantly, I find that ACT score value added is only weakly correlated with tradi-

tional standardized test score value added measures and noncognitive value added measures.

My results highlight the multidimensional nature of teacher skill, with important policy im-

plications for teacher evaluation. In particular, evaluation policies based on one dimension

of teacher skill may overlook important aspects of teacher quality.

I next estimate the impacts of ACT score value added on college enrollment to under-

stand the long-run consequences of access to high-quality teachers during the pivotal college

transition years. To capture heterogeneous effects and substitution patterns between 2-year

and 4-year colleges, I use a nested logit model in which students choose whether to attend a

2-year or 4-year college and which 4-year college to attend. I find positive impacts of ACT

score value added on 4-year college enrollment and selectivity. While math ACT score value

added has larger impacts on 4-year college enrollment, English ACT score value added has

larger impacts on enrollment in selective 4-year colleges. Assignment to a math teacher with
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ACT score value added one standard deviation above the mean increases on-time enrollment

in 4-year colleges by approximately 1.23 percentage points, 7% relative to the full sample

4-year enrollment rate. The increase in 4-year college enrollment is offset by a decline in

2-year college enrollment of 1.53 percentage points, 4% relative to the full sample 2-year en-

rollment rate. Assignment to an English teacher with high ACT score value added decreases

the expected acceptance rate of the 4-year college where a student enrolls by 1 percentage

point.

To understand whether the impacts of ACT score value added extend beyond college

enrollment to improvements in college performance, I estimate the impacts of ACT score

value added on freshman year GPA, remedial math course-taking (measured by enrollment

in an introductory college algebra course), persistence (measured by dropout during or after

freshman year), and graduation within 5 years of initial enrollment. I employ a selection

correction procedure from Lee (1983) to disentangle the direct effects of ACT score value

added on college performance from indirect effects through selection into different colleges,

using peers’ college enrollment patterns as an instrument that shifts the propensity to enroll

in particular colleges without impacting college performance.

I find that students exposed to English or math teachers with high ACT score value added

earn higher freshman college GPAs, are less likely to drop out during or after freshman year,

and are more likely to graduate within five years of initial college enrollment. Moreover,

students exposed to math teachers with high ACT score value added earn higher freshman

GPAs in STEM courses and are less likely to enroll in a remedial college algebra course,

suggesting an important role for subject-specific cognitive skill accumulation. Effects of

a one standard deviation increase in math ACT score value added on overall freshman

GPA, dropout, and completion are similar in magnitude to effects of an analogous increase

in English ACT score value added, although math value added effects are more precisely

identified due to the larger variation in the value added measure. In particular, a one

standard deviation increase in math ACT score value added increases freshman GPA by

0.027 GPA points, 3% of a standard deviation, and decreases freshman dropout rates by 0.5

percentage points, 6% of the full sample mean.

ACT score value added substantially increases the likelihood that a student completes
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a 4-year college degree within 5 years of high school graduation, taking together positive

impacts on 4-year college enrollment, enrollment in selective 4-year colleges with high com-

pletion rates, and college performance conditional on whether and where a student enrolls.

Assignment to a math teacher with ACT score value added one standard deviation above

the mean increases the total college completion rate, unconditional on college enrollment, by

1.16 percentage points or 8% of the full sample mean. Increased 4-year college enrollment

explains 68% of the completion effect, while increased enrollment in selective 4-year colleges

with high completion rates and improved college performance play smaller roles.

Comparing the magnitude of my results to prior studies, I find that the 1.23 percentage

point impact of a one standard deviation increase in math ACT score value added on 4-

year college enrollment is similar in magnitude to previously studied large-scale policies

designed to increase college admissions testing access. Estimates of the impact of testing

center proximity, identified by Bulman (2015), suggest that opening an SAT testing center

in every U.S. high school would increase 4-year college enrollment by 1.6 percentage points,

while Hyman (2017) finds that mandating the ACT test in Michigan increased 4-year college

enrollment by 1.9 percentage points.

ACT score value added has larger impacts than a purely random ACT score increase

induced by rounding, which increases 4-year college enrollment by 0.67 percentage points

and has no effect on college persistence (Haggag et al., 2024). Larger impacts of ACT score

value added on college persistence, relative to a random ACT score increase, suggest that the

impacts of ACT score value added extend beyond the signalling benefits of a higher ACT

score for college admissions, and reflect the accumulation of transferable college-relevant

skills which improve college performance as well as college enrollment.

My results suggest that ACT score value added captures college-relevant skills which

transfer across high school and college classrooms and have economically significant impacts

on students’ long-run outcomes. Thus, despite the smaller variance of ACT score value

added relative to teacher value added in earlier grades, high school teachers have significant

scope to influence students’ life trajectories during the college transition years.

This work bridges two long-standing bodies of literature: a broad multidisciplinary liter-

ature on child skill development, and an empirical literature on the determinants of college

5



choice and college persistence. I bridge these literatures by evaluating the role of teachers

in child skill production during the college transition period, when children’s skills interact

crucially with their college choices to determine their long-run outcomes.

By bridging the child development and college choice literatures, this paper makes two

main contributions. First, I provide novel estimates of teacher value added on college admis-

sions test scores. Prior studies of teacher value added measure cognitive skill outcomes using

state standardized test scores, which are unobservable to colleges (Bacher-Hicks and Koedel,

2023). College admissions test scores are observable to colleges and therefore directly impact

college enrollment and selectivity. Second, I provide novel estimates of the effects of K-12

teacher value added on students’ academic performance in college coursework, complement-

ing existing studies which estimate effects on college enrollment and adult earnings (Chetty

et al., 2014b; Jackson, 2018; Backes et al., 2024).1

The economics literature on child development seeks to identify the technology of child

skill formation from early childhood through adolescence (Cunha and Heckman, 2007; At-

tanasio et al., 2022). I contribute to the education production function branch of this litera-

ture, which evaluates the role of schooling inputs (Todd and Wolpin, 2003), particularly K-12

teachers. Prior work has shown large and multifaceted effects of teachers during elementary

school (e.g. Rockoff, 2004; Rivkin et al., 2005; Hanushek and Rivkin, 2006; Kane and Staiger,

2008). Less is known about the impacts of teachers during high school (e.g. Jackson, 2014,

2018; Mansfield, 2015).2 Yet, recent evidence points to adolescence as a second crucial period

for child development, particularly the development of advanced cognitive skills (Steinberg,

2014; National Academies of Sciences, Engineering, and Medicine, 2019; Hoxby, 2021). This

evidence underscores the need for additional research on skill production during adolescence,

a period termed the “missing middle” between early childhood and realized adult outcomes

(Almond et al., 2018) during which the education production function is not well-specified. I

contribute to this gap in the literature by providing novel estimates of the effects of teachers
1Prior literature has evaluated the relationship between other educational inputs and college completion,

including school quality (Deming et al., 2014; Totty, 2020) and peer quality (Bifulco et al., 2014).
2To my knowledge, published high school value added studies in the U.S. context are limited to those

cited above along with Aaronson et al. (2007), Koedel (2009), Cook and Mansfield (2016), Liu and Loeb
(2021), and Backes et al. (2024). Dozens of prior studies estimate elementary school teacher value added
(Bacher-Hicks and Koedel, 2023).
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during late adolescence.3

A large body of prior work seeks to understand the predictors of college enrollment and

college choice (e.g. Long, 2007; Page and Scott-Clayton, 2016). Less is known about col-

lege persistence and graduation among marginal students (Hoxby, 2004; Bound and Turner,

2011; Zimmerman, 2014; Castleman and Long, 2016; Hyman, 2020). Moreover, estimates

of college persistence differ based on the margin of enrollment or selectivity that is being

studied. For example, the marginal student induced into college attendance by a high qual-

ity teacher and subsequently high ACT score may differ from the marginal student induced

into college attendance by a scholarship incentive program; therefore, these students may

have differing levels of college success. These divergent outcomes once enrolled in college are

a policy-relevant concern. I contribute to this gap in the literature by evaluating whether,

by improving students’ ACT scores, high value added teachers develop skills which transfer

across high school and college classrooms to improve college persistence.

The paper proceeds as follows. Section 2 describes the linked K-12 and postsecondary

administrative data from North Carolina. Section 3 discusses the value added framework

and estimates. Section 4 presents the nested logit model of college enrollment and the

selection-corrected analysis of college performance with the corresponding estimates. Section

5 concludes.

2 Data

2.1 K-12 Data

I leverage detailed administrative data on the universe of K-12 public school students

in North Carolina, provided by the North Carolina Department of Public Instruction (NC

DPI). Beginning in 2013, North Carolina mandated the ACT test as part of the state’s

school accountability program. The test is now administered in public high schools during
3The National Academies of Sciences, Engineering, and Medicine defines late adolescence as ages 16 to 18

(National Academies of Sciences, Engineering, and Medicine, 2019). The American Academy of Pediatrics
defines late adolescence as ages 18 to 21 (https://www.healthychildren.org/English/ages-stages/te
en/Pages/Stages-of-Adolescence.aspx). 11th grade students in the United States are typically ages 16
to 17.
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the school day, free of charge, to all 11th grade students, allowing me to estimate the impacts

of 11th grade teachers on students’ ACT scores without needing to account for non-random

selection into ACT-taking.4 The test is administered during the spring semester, on or near

March 1st. This universal college admissions testing regime, along with the linkage between

detailed K-12 and postsecondary education records, makes North Carolina an ideal setting

in which to study teacher value added on college admissions test scores.

During my sample period, college admissions test scores were widely used in selective

college admissions. Among U.S. colleges and universities that are not open enrollment, over

75% of schools either required, recommended, or considered SAT or ACT scores (Bloem

et al., 2021). Every 4-year college and university in the United States accepts the SAT and

ACT interchangeably (Goodman, 2016), although the tests differ slightly in content and

format. My study focuses solely on the ACT test, which has four sections: math, English,

reading, and science. Each section is scored on a scale of 1-36, and a composite score is

formed as the rounded average of each section score. I evaluate separately students’ math

ACT scores and average English and reading ACT scores. Hereafter, I use “English ACT”

to refer to the average of a student’s English and reading ACT scores.

I leverage NC DPI data on student demographics, ACT scores, lagged standardized test

scores, and course enrollments linked with teacher identifiers, demographics, experience, and

credentials to estimate teacher value added on ACT scores. My sample consists of North

Carolina public high school students who took the 11th grade ACT test between 2014 and

2018, corresponding to the high school graduating classes of 2015-2019.5 I restrict the sample

as follows.
4My sample of 11th grade ACT-takers includes approximately 93% of 11th grade students in the cor-

responding North Carolina public school cohorts. Thus, although the ACT test is mandatory, ACT par-
ticipation is below 100% due to testing exemptions and student absences. The 93% ACT-taking rate in
my sample indicates that many schools fall short of the state-mandated 95% ACT participation threshold.
Detailed information on ACT testing exemptions and school-level participation requirements for the most
recent academic year can be found here: https://www.dpi.nc.gov/documents/accountability/testin
g/north-carolina-test-coordinators-handbook/open.

5Students in my sample graduated from high school prior to the onset of the Covid-19 pandemic; therefore,
all students took the ACT test in-person and would have been required or recommended to submit a college
admissions test score to roughly 75% of U.S. colleges and universities (Bloem et al., 2021). Students in
my sample who enrolled in college were impacted by the Covid-19 pandemic at different points during
their undergraduate careers; therefore, I include cohort fixed effects in all analyses of college performance
outcomes.
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I restrict the English value added estimation sample to students matched with their

11th grade English teacher. I restrict the math value added estimation sample to students

matched with their 11th grade math teacher. I match students who took different courses

within the same subject in the fall and spring semesters with their fall semester teacher

to maximize the amount of exposure prior to taking the ACT test. I match students who

took different courses within the same subject concurrently with their teacher in the least

advanced course.6 For example, a student who takes Algebra 2 in the fall semester and

Precalculus in the spring semester is assigned to their Algebra 2 teacher. A student who

takes full-year courses in Algebra 2 (course code 2024) and Precalculus (course code 2070)

concurrently is also assigned to their Algebra 2 teacher.

I restrict the math value added estimation sample to students who took Algebra 1 in 8th

grade (the “advanced” track) or 9th grade (the “standard” track), representing approximately

80% of 11th grade students. This sample restriction excludes very advanced students and

remedial students, who may be taking a wide range of different math courses during 11th

grade.

2.2 College Data

I link K-12 data with enrollment records from all sixteen public 4-year colleges and

universities in North Carolina, provided by the University of North Carolina (UNC) System.

The UNC System includes all public 4-year colleges and universities in North Carolina. It is

among the oldest and largest public university systems in the United States and includes five

Historically Black Colleges and Universities (HBCUs) and one Historically American Indian

University (UNC Pembroke). Selectivity and quality vary significantly across institutions

within the UNC System. I match students who took the 11th grade ACT test between 2015

and 2018, corresponding to the high school graduating classes of 2016-2019, with UNC system

enrollment records from Fall 2016-Spring 2024 and graduation records from Fall 2016-Fall

2023.7 The UNC system enrollment records include semester-level enrollment status as well
6I define the least advanced course as the course with the lowest numeric course code. Lower numeric

course codes typically correspond to core courses rather than electives.
7I match a subset of the full sample with college enrollment records to capture on-time college enrollment

because college enrollment data begins in 2016.
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as course-level enrollments, final grades, and earned credits.8 The UNC system graduation

records include degree and major information for both undergraduate and graduate degrees.

I restrict my analysis to on-time college enrollment during the summer or fall semester

following high school graduation.

Approximately 70% of on-time 4-year college enrollments among North Carolina public

high school graduates are within the UNC system (Tippett and Kahn, 2018), suggesting

that administrative data from the UNC system covers a large fraction of college enrollments

among students in my sample. To capture enrollment in colleges outside of the UNC system,

I leverage high school graduation survey data from the Graduate Data Verification System

(also called the Graduate Survey), provided by NC DPI. This survey is administered to

all North Carolina public high school students during the spring of 12th grade, and school

counselors are responsible for verifying and submitting the graduate survey data. Students’

post-graduation plans are classified into the following categories: 2-year college, 4-year col-

lege, trade, business, or nursing school, military, employment, and other/unknown plans.

Students intending to complete postsecondary education are asked whether they plan to at-

tend a public or private institution and whether they plan to enroll in-state or out-of-state.9

I utilize UNC system data, supplemented with high school graduation survey data, to

evaluate college outcomes of interest, including college enrollment, college choice, and col-

lege performance (measured by freshman year GPA, remedial college algebra course-taking,

dropout during or after freshman year, and 5-year college completion). I match NC DPI

and UNC System data with publicly available institution-level data on the characteristics

of colleges and universities attended by students and teachers in my sample. This data is

provided by the Integrated Postsecondary Education Data System (IPEDS).
8Admissions data is not available; therefore, my analysis will not separately consider college acceptance

outcomes and enrollment outcomes conditional on acceptance.
9Appendix F describes the alignment between high school graduation survey data on in-state 4-year

public college enrollment and UNC system administrative data. Prior work linking K-12 and higher edu-
cation outcomes in North Carolina typically relies on the high school graduation survey data (e.g. Jackson,
2014, 2018), which overreports UNC system enrollment relative to administrative data and does not include
enrollment in specific colleges.
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2.3 Descriptives

Table 1 presents summary characteristics for the 493,582 North Carolina public high

school students who took the 11th grade ACT test between 2014 and 2018. After imposing

track restrictions and excluding students who are not matched with a teacher, are miss-

ing a valid subject-specific ACT score, or are missing covariates, my English value added

estimation sample includes 412,678 students and my math value added estimation sample

includes 272,096 students. After excluding the 2014 ACT-taking cohort and excluding stu-

dents who are not matched with English and math teacher value added estimates or are

missing covariates, my college outcomes estimation sample includes 272,096 students.10 The

sample is racially, ethnically, and socioeconomically diverse, reflecting the composition of

the youth population of North Carolina. Over 90% of students in the sample are matched

with an 11th grade teacher in both English and math. 13.2% of students intend to enroll in

a 4-year private or out-of-state college and 35.1% intend to enroll in a 2-year college. 20.7%

of students enroll in a 4-year public college in the UNC system on-time during the summer

or fall semester following high school graduation. Among students who enroll in the UNC

system, 9.2% drop out during or after freshman year and 70.8% graduate with a bachelor’s

degree or higher within 5 years of initial enrollment.

Table 2 presents summary characteristics for the teachers in my sample. The students in

my sample are matched with 5,518 math teachers and 5,635 English teachers. On average,

teachers in the sample have approximately 12 years of experience and are present during two

to three years of the five year sample period. Sample attrition arises from teachers either

leaving the teaching profession in North Carolina or transferring to courses in other grade

levels. Teachers are matched with approximately 60 to 70 11th grade students in the sample,

on average. Students are distributed across fewer sections in English than in math. This

is because, while English classrooms typically contain students from the same grade level,

math classrooms often contain students from multiple grade levels. Since only 11th grade

students take the ACT test, my sample is restricted to a subset of the students in some math

classrooms.
10Appendix F demonstrates that the characteristics of my estimation samples are similar to those of the

full sample of 11th grade students and provides further detail on variable and sample construction.
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Table 3 presents summary characteristics for the 16 colleges in the UNC system. Within

the UNC system, there is a wide range of college selectivity, as measured by mean ACT scores

among students in my sample who enroll in the institution.11 There is also a wide range

of student performance across institutions, as measured by GPA, remedial college algebra

course-taking, dropout, and 5-year completion rate. Cross-institution differences in student

performance are partially driven by differences in student body composition but may also

be attributed to institutional policies such as grading curves and student support programs.

Thus, students’ expected performance in college may vary substantially with their choice of

institution within the UNC system.

Figures 1 and 2 demonstrate that ACT score distributions overlap substantially between

some, but not all, colleges. A 25th percentile ACT math score at UNC Chapel Hill, the

highly selective state flagship university, is equivalent to a 75th percentile score at moderately

selective Appalachian State University, indicating some overlap in the schools’ ACT score

distributions. On the other hand, a 25th percentile score at Appalachian State is several

points higher than the 75th percentile score across all less-selective Historically Black Colleges

and Universities in the sample. Thus, marginal improvements in ACT scores may shift

students from moderately selective to highly selective colleges, but may have little effect on

enrollment in the least selective institutions.

11My data includes only one ACT score per student and therefore does not capture repeated test-taking,
which typically increases students’ scores (Shah, 2022). Therefore, mean ACT scores among my sample will
be lower than publicly reported mean ACT scores among matriculated students at each college.
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Table 1: Student Summary Statistics by Estimation Sample

Mean
(SD)

Economically Disadvantaged 0.386
Female 0.507
Black 0.247
Hispanic 0.125
ACT Composite 18.61

(5.160)
ACT Math 19.03

(4.820)
ACT English 18.07

(5.997)
Math Teacher Match 0.937
English Teacher Match 0.946
Math and English Teacher Match 0.919
Intend to Enroll in 2-Year College 0.351
Intend to Enroll in 4-Year Private/Out-of-State College 0.132
Enrolled in UNC On-Time (After High School) 0.207
Freshman UNC GPA 2.960
Freshman UNC Dropout 0.0920
Graduated from UNC within 5 Years 0.708
Observations 493582
UNC GPA, dropout, graduation conditional on UNC enrollment

13



Table 2: Teacher Summary Statistics

English Math
Mean Mean
(SD) (SD)

Holds Graduate Degree 0.434 0.380
(0.496) (0.485)

Female 0.778 0.646
(0.415) (0.478)

Nonwhite 0.182 0.204
(0.386) (0.403)

Experience (Years) 11.66 12.51
(9.027) (9.942)

Years in Sample 2.489 3.067
(1.459) (1.418)

Switched Schools 0.125 0.183
(0.331) (0.387)

Number of 11th Grade Students 72.88 61.11
(106.0) (72.73)

Number of Sections with 11th Grade Students 6.225 8.122
(6.570) (7.423)

Observations 5635 5518
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Figure 1: English Skill Distributions by College

Box represents 25th–75th percentiles, line represents median, whiskers represent 1.5× IQR
HBCUs include NC A&T, Winston-Salem State, Fayeteville State, Elizabeth City State, NC Central

Figure 2: Math Skill Distributions by College

Box represents 25th–75th percentiles, line represents median, whiskers represent 1.5× IQR
HBCUs include NC A&T, Winston-Salem State, Fayeteville State, Elizabeth City State, NC Central
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3 Estimating ACT Score Value Added

3.1 Value Added Model and Estimation Strategy

I estimate the impacts of math teachers on math ACT scores and the impacts of English

teachers on the average of English and reading ACT scores to obtain subject-specific esti-

mates of ACT score value added using a linear value added model. I assume that teacher

assignment is independent from students’ expected 11th grade ACT performance after con-

trolling for lagged student achievement and observable characteristics as follows.

In North Carolina, high school students take standardized “end-of-course” tests after

completing specific math, English, and science courses. The timing of end-of-course tests

varies across subjects and differs for students who take math courses above their assigned

grade level. In my sample, all students take an end-of-course English test in 10th grade,

providing a 1-year lagged test score. Students take an end-of-course Algebra 1 test in either

8th or 9th grade. Students take an end-of-course Biology test in either 9th grade or 10th grade.

I control for all available lagged end-of-course test scores in both English and math value

added specifications, shown in equation (1).

ACTijkst = β0 + β1EOCit−1 + β2Xit + β3Zit + θjkTjkt + αs + γt + ϵijkst (1)

Here, ACTijkst is the subject k ACT score of student i assigned to teacher j in school

s and year t. EOCit−1 is a vector of lagged end-of-course test scores.12Xit is a vector of

student-level and classroom-level controls.13 Zit is a vector of controls for 11th grade math

and English courses and course levels (standard, honors, or college-level).14 Most high schools

in the United States do not explicitly label courses of study; yet, students are often placed
12All test score covariates are standardized to have mean 0 and standard deviation 1 within each cohort.

End-of-course test scores include English 2, Algebra 1, and Biology. Students with missing English 2 or
Algebra 1 end-of-course test scores are excluded from the sample. Missing Biology end-of-course test scores
are imputed using the standardized mean of 0 and missing test score indicators are included as covariates.
Algebra 1 end-of-course test scores are interacted with an indicator for math track.

13Xit includes 8th grade end-of-grade (EOG) math, English, and science test scores, math track, econom-
ically disadvantaged status, race/ethnicity, and gender, as well as the following classroom-level variables to
account for peer effects on student achievement: classroom size, racial/ethnic composition, percent female,
percent economically disadvantaged, and mean lagged test score. Missing 8th grade EOG test scores are
imputed using the standardized mean of 0 and missing test score indicators are included as covariates.

14Appendix F describes the mapping of high school course codes to course controls.
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into different courses based on academic achievement (Betts, 2011). Zit accounts for implicit

tracking practices by restricting comparison to students taking the same 11th grade courses

at the same level. Additionally, Xit accounts for tracking into advanced math courses based

on the timing of Algebra 1 course-taking, a well-documented gateway to advanced math

coursework (Dougherty et al., 2015).

αs and γt are school and cohort fixed effects, respectively. High school fixed effects are

identified separately from teacher fixed effects due to the presence of teacher “switchers”

who move schools during the sample period (Mansfield, 2015).15 Tjkt are vectors of subject

k 11th grade teacher indicator variables, respectively. θjk are the parameters of interest,

representing the causal effects of teacher j of subject k on subject k ACT scores.

I estimate teacher value added using a standard estimation method adapted from Chetty

et al. (2014a), which predicts each teacher’s year t value added based on the ACT scores of

students assigned to the teacher in other academic years. This estimation procedure embeds

three features which are desirable in my setting. First, the procedure generates leave-year-out

estimates of teacher quality. Because I will use teacher value added estimates as treatment

variables in subsequent analysis, it is necessary to use leave-year-out value added estimates

to prevent mechanical endogeneity from using the same students to form both the treatment

variable and the outcomes. Second, estimates are shrunk toward an empirical prior of zero,

the mean teacher effect. This shrinkage accounts for the fact that student test scores are

a noisy signal of teacher quality, particularly for teachers assigned to a small number of

students. Third, this estimation procedure allows for teacher effects to vary or “drift” over

time by allowing student ACT scores from years closer to year t to receive more weight in

the prediction than years further away.

My estimation procedure produces consistent estimates of teacher value added under the

following assumptions. First, I assume that the distributions of teacher quality and student
15While it is not standard to include school fixed effects when estimating teacher value added in elementary

and middle school, nearly all prior studies of high school teacher value added include fixed effects for schools
(Bacher-Hicks and Koedel, 2023). While high school fixed effects narrow the variation used to identify teacher
value added, the larger size of high schools relative to lower grades makes identification feasible. High school
fixed effects account for non-random student and teacher sorting across schools, which may be more relevant
in high school than in lower grades (Bacher-Hicks and Koedel, 2023). Including high school fixed effects
diminishes the utility of common forecast unbiasedness tests (e.g. Chetty et al., 2014a) because average bias
from nonrandom sorting to teachers within schools is zero by construction at the school level.
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ACT scores are stationary; that is, the means of the teacher quality distribution and the

(normalized) student ACT score distribution are constant throughout the sample period

and the correlation between teacher-level and classroom-level shocks across any two years

depends only on the time between them. Second, as discussed previously, I assume that

teacher assignment is independent from students’ expected 11th grade ACT performance

after accounting for the covariates included in the model. I test this assumption empirically

by running several balance tests in the spirit of Rothstein (2010), with results in Table 4.

First, I regress 10th grade unweighted GPA, residualized on value added model covariates,

on 11th grade teacher fixed effects to understand whether teacher assignment is predictive

of lagged student academic achievement after conditioning on model covariates. An F -test

for joint significance of the teacher fixed effects suggests that the relationship is marginally

statistically significant; however, the magnitude of the fixed effects is small. A one stan-

dard deviation increase in 11th grade English teacher fixed effects increases residualized 10th

grade GPA by 0.23 GPA points or roughly half of a standard deviation, while a one standard

deviation increase in 11th grade math teacher fixed effects increases residualized 10th grade

GPA by 0.09 GPA points or roughly one quarter of a standard deviation. 11th grade math

teacher assignment is less correlated with residualized 10th grade GPA than 11th grade En-

glish teacher assignment, despite the fact that a 1-year lagged math test score covariate is

unavailable in my setting. This suggests that the multi-year lagged Algebra 1 end-of-course

test score covariate, coupled with more recent test scores in English and Biology, sufficiently

account for student-teacher sorting in math based on student achievement. Repeating the

exercise without residualizing 10th grade GPA suggests that value added model covariates

account for a substantial share of nonrandom student-teacher sorting.

I compare the results of the conditional and unconditional balance tests with a “placebo”

balance test regressing the length of a student’s last name, residualized on value added model

covariates, on 11th grade teacher fixed effects. An F -test for joint significance of the teacher

fixed effects suggests that the relationship is also marginally statistically significant, despite

student last names being unrelated to the teacher assignment process. The marginally sig-

nificant conditional balance test and placebo balance test results likely reflect over-rejection

of the null hypothesis in F -tests with a large number of fixed effects and relatively small
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within-cell sample sizes. Appendix A presents results of an additional permutation-based

balance test adapted from Abrams et al. (2012) and Landon (2024), which addresses over-

rejection of the null hypothesis in F -tests with a large number of fixed effects and relatively

small within-cell sample sizes.16 Appendix B describes the course scheduling algorithm used

by North Carolina public high schools to create students’ course schedules, which provides

further support for the quasi-random nature of teacher assignment after conditioning on a

student’s course choices. Appendix C demonstrates robustness of value added estimates to

various modeling assumptions.

Table 4: Balance Tests: Joint Significance of Teacher Assignment

(1) (2)
English Math

Residualized GPA
R2 0.0493 0.0550
F -Statistic 3.213 2.905
SD of Teacher Fixed Effects 0.228 0.0912
SD of Outcome 0.442 0.441
GPA
R2 0.292 0.345
F -Statistic 25.55 26.28
SD of Teacher Fixed Effects 0.570 0.386
SD of Outcome 0.717 0.717
Placebo: Last Name Length
R2 0.0166 0.0194
F -Statistic 1.043 0.989
SD of Teacher Fixed Effects 0.765 0.285
SD of Outcome 2.532 2.532
Observations 227221 227045
F -Statistics from OLS regressions of GPA or placebo outcome
on 11th grade teacher fixed effects

16I simulate the random assignment of teachers to classrooms within school-cohort cells and calculate
the standard deviation of mean 10th grade student absences, residualized on value added model covariates,
across the teachers in the sample. I then repeat the process 100 times, generating 100 simulated measures
of dispersion capturing sampling variation in classroom average ability under random teacher assignment.
Finally, I compare the true standard deviation of teacher-mean residualized student absences to the simulated
distribution. For both math and English, I find that the true standard deviation falls just outside the range
of simulated standard deviations, suggesting a limited role for student-teacher sorting in this setting after
accounting for value added model covariates.
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The estimation procedure is as follows. First, I residualize subject ACT scores on the set

of covariates included in the value added model:

ϵ̂ijkst = ACTijkst − β̂0 − β̂1EOCit−1 − β̂2Xit − β̂3Zit − α̂s − γ̂t (2)

where the coefficients β̂ are estimated using an OLS regression. I construct the mean resid-

ualized ACT score ϵ̄jt within each teacher-year cell, denoting ϵ̄j,−t as the vector of mean

residualized ACT scores in all other periods. The estimator for teacher j’s value added in

period t is

θ̂j,−t = ψ′
tϵ̄j,−t (3)

where ψt are the coefficients from an OLS regression of ϵ̄jt on ϵ̄j,−t. These coefficients are

chosen to minimize the mean square error of the value added forecasts, making θ̂j,−t the

best linear predictor of ϵ̄jt based on ACT scores from other years. The standard deviation

of teacher value added is estimated by computing classroom-level residualized ACT scores

ecjt, then randomly pairing each classroom with another classroom assigned to the same

teacher. The standard deviation of teacher value added is estimated as the square root of

the covariance of residualized ACT scores across all classroom pairs in the sample (Chetty

et al., 2014a; Jackson, 2014).

3.2 Value Added Estimates

Table 5 summarizes the distributions of shrunken leave-year-out value added estimates.

The estimated standard deviation of English teacher ACT score value added is 0.0610. The

estimated standard deviation of math teacher ACT score value added is slightly larger,

0.0796. That is, assignment to an English teacher with value added one standard deviation

above the mean increases a student’s predicted English and reading ACT score by 0.0610

standard deviations. Assignment to a comparably skilled math teacher increases a student’s

predicted math ACT score by 0.0796 standard deviations, approximately 0.5 points on the

36-point ACT test scale. These findings align with prior literature, which typically finds

that the variance of teacher value added on math achievement is larger than the variance of
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teacher value added on reading achievement (Hanushek and Rivkin, 2010; Bacher-Hicks and

Koedel, 2023). The estimated standard deviations of teacher value added on ACT scores are

similar in magnitude to prior estimates of high school teacher value added on standardized

test scores (Jackson, 2014) and smaller in magnitude than estimates of teacher value added

in elementary and middle school (e.g. Chetty et al. (2014a)). This is consistent with the

notion that variation in teacher value added decreases as students age because individual

teachers become less influential for cognitive skill development (Cunha and Heckman, 2007),

a standard deviation in test scores captures increasing cognitive skill dispersion as course

content becomes more advanced (Cascio and Staiger, 2012), and students are exposed to

more teachers simultaneously.

Decomposing the variance of ACT score value added into between-school and within-

school components, following Chetty et al. (2014a), reveals that the majority of variation is

between high schools, yet substantial variation in teacher quality remains within the high

schools. To decompose the variance of ACT score value added, I calculate school-level

means of shrunken teacher-year value-added weighted by students taught. Then, I calculate

the share of the total variance attributable to deviations of school means from the grand

mean (between-school) versus deviations of teacher-year estimates from their school mean

(within-school).17 I find that 61.7% of the variance of English ACT score value added and

70.2% of the variance of math ACT score value added is between high schools, leaving roughly

one-third of the variation unexplained by cross-school differences. The larger between-school

variance share is consistent with the wide range of school quality at the high school level

(e.g. Deming et al., 2014). Yet, my results suggest that high school teacher and school
17I decompose the variance of shrunken teacher-year ACT score value added estimates using the law of

total variance, weighting by the number of students taught. The between-school and within-school variance
components are

V arbetween =

∑
s

(∑
j∈s,t Njt

)
(θ̄s − θ̄)2∑

j,t Njt
,

V arwithin =

∑
s

∑
j∈s,t Njt (θ̂j,−t − θ̄s)

2∑
j,t Njt

,

where θ̂j,−t is the estimated ACT score value added of teacher j in year t, Njt is the number of students
assigned to teacher j in year t, θ̄ is the weighted mean of ACT score value added across all teacher-year
observations, and θ̄s is the weighted mean of ACT score value added across teacher-year observations in
school s.
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quality are distinct, consistent with prior literature finding that elementary and middle

school assignment is not determinative of teacher quality (e.g. Chetty et al., 2014a).

Table 5: Estimated Distributions of Teacher Value Added

Estimated
Standard Deviation

Between-School
Variance Share

Within-School
Variance Share

English 0.0610 61.7% 38.3%

Math 0.0796 70.2% 29.8%
Estimated standard deviation is the square root of the estimated covariance
in mean residuals from equation (2) across classrooms, within teachers

ACT score value added is distinct from observable teacher qualifications. Observable

teacher characteristics, including race/ethnicity, gender, experience, and education, predict

approximately 1% of the variation in value added estimates across teachers. Appendix D

provides additional detail on the relationships between ACT score value added and observable

teacher characteristics.

ACT score value added is also distinct from teacher value added on traditional standard-

ized test score measures and teacher value added on noncognitive student outcomes. To

test the relationship between ACT score value added and teacher value added on traditional

standardized test score measures, I estimate 9th grade math teacher value added on 9th grade

Algebra 1 end-of-course (EOC) test scores and 10th grade English teacher value added on 10th

grade English 2 end-of-course (EOC) test scores. Results are shown in Appendix E. I find

a positive but relatively low within-math teacher correlation of 0.0715 between ACT score

value added and Algebra 1 EOC score value added and a within-English teacher correlation

of 0.0146 between ACT score value added and English 2 EOC score value added. To test

the relationship between ACT score value added and teacher value added on noncognitive

student outcomes, I estimate 11th grade math and English teacher value added on total 11th

student absences.18 Results are shown in Appendix E. I find a negative within-math teacher

correlation of −0.0701 between math ACT score value added and noncognitive value added
18Student absences are a measure of school participation behavior. School participation behaviors may be

influenced by students’ noncognitive and cognitive skill levels as well as factors such as family responsibilities,
particularly among older high school students. I follow prior literature in using behaviors as an imperfect
proxy for noncognitive skills (e.g. Heckman and Kautz, 2012; Jackson, 2018).
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and a negative within-English teacher correlation of −0.0275 between English ACT score

value added and noncognitive value added.

The low within-teacher correlations between EOC score value added, noncognitive value

added, and ACT score value added are consistent with prior literature on multidimensional

teacher quality, which typically finds weak relationships between teacher effects across skill

measures (Loeb and Candelaria, 2012; Papay, 2011; Jackson, 2018; Petek and Pope, 2023;

Backes et al., 2024) and subjects (Cook and Mansfield, 2016). One potential explanation

for the low correlation between EOC and ACT value added is that the ACT test measures

different latent constructs than EOC tests; in particular, the ACT test is designed to measure

general aptitude and college readiness, while EOC tests evaluate mastery of subject-specific

content. Teachers may reasonably differ in their effectiveness across these domains (Papay,

2011). Additionally, EOC tests are designed to assess course-specific knowledge in alignment

with North Carolina curriculum standards, while the ACT does not directly align with the

North Carolina high school curriculum. Thus, teacher value added across EOC and ACT

tests may differ based on how strictly teachers adhere to state curricular standards and

how much classroom time is spent on state test preparation. Other potential explanations

include test timing, score standardization, and teacher test preparation incentives (Papay,

2011; Riehl and Welch, 2023). EOC tests are offered at the end of each semester, while

the in-school ACT test is offered once a year in March. EOC tests are designed and scaled

within the state of North Carolina, while the ACT test is nationally normed. Unlike the

ACT, EOC test scores factor in to teacher, school, and student accountability measures.

To understand the relative predictive power of ACT score value added versus EOC score

and noncognitive value added for long-run outcomes, I estimate OLS regressions of ACT

score value added, EOC score value added, and noncognitive value added measures on an

indicator for on-time enrollment in 4-year colleges, conditioning on student-level covariates

and school and cohort fixed effects. I find that, without conditioning on high school GPA,

math EOC score value is more predictive of college enrollment than math ACT score value

added. After conditioning on high school GPA, however, math EOC score value added is no

longer predictive of college enrollment. This result suggests that the impact of math EOC

score value added on college enrollment operates through improvements in high school GPA,
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while math ACT score value added has positive impacts not captured by GPA alone. Given

that ACT scores are observable to colleges during the admissions process while EOC scores

are not, this result underscores the distinct relevance of ACT score value added for college

outcomes. I find no significant relationship between noncognitive value added and college

enrollment in this sample. These results, shown in Appendix D, suggest that teacher value

added on ACT scores is not only distinct from traditional test score value added measures

and noncognitive value added measures, but also an empirically relevant predictor of long-

run postsecondary outcomes despite the smaller variance in ACT score value added relative

to teacher value added in earlier grade levels.

4 ACT Score Value Added and College Outcomes

In this section, I estimate the long-run effects of ACT score value added on college

enrollment, college choice, and college performance. Evaluating these different postsecondary

outcomes will reveal whether ACT score value added reflects the accumulation of skills

which are transferable across high school and college classrooms, or the accumulation of non-

transferable skills which boost student achievement on the ACT test but do not translate to

improvements in postsecondary academic performance.

Examples of non-transferable skills include incentivizing effort on the ACT test and

“teaching to the test” by focusing on ACT-specific testing strategies. Even if the skills

captured by ACT score value added are non-transferable, we should expect to see impacts of

ACT score value added on 4-year college enrollment and the choice of specific 4-year colleges

because ACT scores enter directly in college admissions decisions. Thus, ACT scores are

valuable as an ability signalling mechanism in the college admissions process regardless of

the mapping from the ACT score signal to college-relevant skills.

Examples of transferable skills include encouraging student engagement with school, lead-

ing to increased motivation and effort across courses and assessments, teaching general aca-

demic skills such as problem-solving and critical reading which are foundational to college

coursework, and teaching specific academic content upon which college coursework builds. If

ACT score value added measures transferable college-relevant skill accumulation, we should
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expect to see long-run effects not only on college enrollment and college choice, but also on

college performance conditional on whether and where a student enrolls in college.

4.1 Reduced-Form Evidence

Table 6 presents evidence that ACT score value added θ̂ is positively related with 4-year

college enrollment and selectivity and negatively related with 2-year college enrollment, even

after conditioning on student covariates Xit,19 cohort fixed effects α, and high school fixed

effects γ as shown in equation (4).

The relationship between ACT score value added and 4-year college enrollment is larger

for on-time enrollment, suggesting that ACT score value added induces 4-year college en-

rollment among some students who would have otherwise enrolled in a 2-year college and

later transferred to a 4-year institution. While the administrative UNC system enrollment

data captures both on-time and lagged enrollment, the survey data on 4-year private or out-

of-state college enrollment and 2-year college enrollment captures only on-time enrollment.

Thus, for consistency I restrict all subsequent analysis to on-time college enrollment during

the summer or fall semester following high school graduation.

Yist = ω0 + ω1,Englishθ̂English−t + ω1,Mathθ̂Math−t + ω2Xit + γs + αt + ϵist (4)

Table 6: ACT Score Value Added and College Enrollment

(1) (2) (3) (4)
4-Year

College Enrollment
On-Time 4-Year

College Enrollment
On-Time 2-Year

College Enrollment
4-Year College

Acceptance Rate
English ACT Value Added -0.000384 0.00636 -0.00710 -0.00659∗∗

(0.00812) (0.00845) (0.0121) (0.00325)

Math ACT Value Added 0.0130∗∗∗ 0.0189∗∗∗ -0.0207∗∗∗ -0.00601∗∗∗

(0.00312) (0.00338) (0.00378) (0.00157)
Observations 272082 272082 263603 74230
Mean 0.472 0.399 0.348 0.578
R2 0.353 0.334 0.185 0.228
Standard errors in parentheses, clustered at the high school level
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Coefficients standardized to reflect 1σ increase in value added

19Student covariates are defined as in the value added estimation model (1).
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4.2 College Outcomes Model

Motivated by reduced-form evidence of the relationship between ACT score value added

and college enrollment and selectivity, I model college choice using a nested logit model,

with the student’s decision problem depicted in Figure 3. The nested structure allows for

heterogeneous effects of ACT score value added across students with different characteris-

tics, such as lagged achievement. Additionally, the nested logit model allows for two 4-year

colleges to be closer substitutes than a 2-year college and a 4-year college, capturing student

substitution patterns across heterogeneous college types.

Figure 3: College Decision Problem

2-Year College 4-Year College No College

High School Completion

16 UNC System CollegesPrivate/Out-of-State

I estimate the nested logit model in two stages.20 The utilities of choosing college c within

the 4-year college nest and of choosing college nest l can be expressed as:

Uicst =
δ0c
ρ

+
δ1,English,c

ρ
θ̂English−t +

δ1,Math,c

ρ
θ̂Math−t +

δ2c
ρ
Xit +

δ3c
ρ
Sst +

αct

ρ
+ ηicst (5)

Uilst = κ0l + κ1,English,lθ̂English−t + κ1,Math,lθ̂Math−t + κ2lXit + ρIVist + γls + αlt + ηilst (6)

where IVist is the inclusive value term representing the expected utility associated with

choosing student i’s preferred choice in the 4-year college nest, and ρ therefore represents
20Due to the additive separability of the nested logit log-likelihood function, estimating the model in two

stages is equivalent to estimating the model in one stage using maximum likelihood estimation. Estimating
the model in two stages is less efficient but more computationally tractable.
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the degree of similarity between choices within the 4-year college nest.21

IVist = log

(∑
c

δ0c
ρ

+
δ1,English,c

ρ
θ̂English−t +

δ1,Math,c

ρ
θ̂Math−t +

δ2c
ρ
Xit +

δ3c
ρ
Sst +

αct

ρ

)
(7)

Here, c indexes college choices, which include the 16 colleges in the UNC system as well

as one choice capturing enrollment in all private or out-of-state 4-year colleges which are not

individually observed in the data, and l indexes college nests, which include 2-year college, 4-

year college, and no college. In the absence of data on college admissions decisions, I assume

that each student’s choice set includes all colleges in the data. Therefore, my estimates will

encompass the impacts of ACT score value added on both college admissions outcomes and

college enrollment decisions conditional on admission.

θ̂k−t is a “leave-year out” estimate of subject k ACT score value added.2223 Xit is a vector

of student-level covariates defined in the value added estimation model shown in equation

(1), and α are cohort-choice fixed effects. γ are high school-choice fixed effects, accounting

for cross-high school differences in the propensity to enroll in each nest, and Sst is a vector of

high school-cohort level controls, including the share of students in the prior graduating class

attending each college in the UNC system.24 These lagged peer college enrollment shares are

included in the college choice equation but will be excluded from the college performance
21If ρ = 1, the model reduces to a multinomial logit model without nesting.
22Throughout the analysis, I include both English and math teacher value added in the same model.

Results are robust to estimating separate models by subject, as the within-student correlation between
English and math teacher value added is low (0.1015).

23The shrinkage procedure described in Section 3 corrects for measurement error in teacher value added
estimates; therefore, including shrunken value added estimates on the right hand side of an OLS regression
will yield coefficient estimates which do not suffer from attenuation bias (Walters, 2024). In logit models,
attenuation bias due to measurement error is larger than in a linear regression framework (Kao and Schnell,
1987), and there is no closed form expression for the asymptotic attenuation bias which could be used to
adjust the shrinkage procedure for logit models. Thus, logit coefficients on teacher value added may be
diminished by attenuation bias. Wooldridge (2010) and Cramer (2005) show that, despite attenuation bias
in the coefficient estimates, average marginal effect estimates will be consistent in logit models.

24Sst includes indicators for locale type (city, suburb, town, rural), average daily membership, average
daily membership squared, percentage of grade level proficient students, percentage of fully licensed teachers,
percentage of teachers with three years of experience or less, percentage of teachers with advanced degrees,
percentage of students on free or reduced-price lunch, short-term suspension rate, number of crimes or acts
of violence per 1,000 students, racial composition of student body, total per-pupil funding, distance (in
kilometers) to the nearest college in the UNC system and its square, and the shares of students in the prior
graduating class attending each college in the UNC system. I do not allow high school fixed effects to enter
the choice of specific 4-year college c because high school-by-college fixed effects are not well identified outside
of very large high schools.
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equation. This exclusion restriction will allow me to identify the effects of ACT score value

added on college performance, correcting for selection into specific colleges on unobservable

student characteristics. ηicst and ηilst are type 1 extreme value (Gumbel) distributed. I allow

all coefficients to vary across 4-year colleges c and nests l; that is, all model covariates are

allowed to impact the utility of enrollment differently across colleges.

Within the 4-year college nest, I normalize the coefficients on choice c = UNC Chapel Hill

to 0. Across nests, I normalize the coefficients on l = no college to 0. Coefficient estimates

on l = 2-year college from equation (6) will therefore reflect the utility of attending a 2-year

college, relative to not attending college. Coefficient estimates on l = 4-year college from

equation (6) will reflect the utility of attending UNC Chapel Hill, relative to not attending

college, and coefficient estimates from equation (5) will reflect the utility of attending 4-year

college c, relative to UNC Chapel Hill. To obtain coefficient estimates reflecting the utility

of attending each 4-year college c relative to not attending college, I first multiply estimates

from equation (5) by the estimate of ρ from equation (6). I then add the coefficient estimates

on l = 4-year college from equation (6), which reflects the utility of attending UNC Chapel

Hill.

After estimating the nested logit model of college choice, I evaluate the effects of ACT

score value added on college performance measures, including freshman year GPA, remedial

math course-taking (measured by enrollment in an introductory college algebra course during

any semester of college), persistence (measured by dropout during or after freshman year),

and graduation within 5 years of initial enrollment. To understand the effects of ACT

score value added on postsecondary academic performance, it is necessary to disentangle

three potential channels. First, as depicted in equation (6), ACT score value added impacts

selection into UNC system enrollment. Since I only observe college performance measures for

students who enroll in the UNC system, changing selection into UNC system enrollment will

impact the observed relationship between ACT score value added and college performance

measures. Second, as depicted in equation (5), ACT score value added impacts selection

into specific colleges within the UNC system. Since different colleges have different grading

curves and dropout rates, changing selection into specific colleges will impact observed college

performance measures. Third, ACT score value added could measure persistent human
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capital accumulation which directly improves student performance in college, conditional on

whether and where a student enrolls within the UNC system. Channels one and two are

consistent with either interpretation of ACT score value added; that is, whether ACT score

value added measures the accumulation of skills which are transferable or non-transferable

between high school and college. This is because ACT scores factor in to college admissions

decisions, and therefore a higher ACT score will improve college enrollment outcomes on

the margin regardless of the skills measured by an ACT score. Channel three, on the other

hand, will only be present if ACT score value added measures the accumulation of skills

which transfer across high school and college classrooms.

To disentangle these three channels and isolate the direct effects of ACT score value

added on college performance, I generalize the Heckman selection correction procedure to

a nested logit college selection model, using methods from Lee (1983).25 The Lee (1983)

selection correction has been previously applied in empirical education literature to study,

for example, the wage returns to college quality (Brewer et al., 1999), the effects of student

characteristics on years of completed schooling (Hilmer, 2001), and the competitive behavior

of for-profit universities (Kofoed, 2015).

I model college performance as follows:

College_Performanceicst = π0 + π1Englishθ̂English−t + π1Mathθ̂Math−t + π2Xit

+ γs + αt + τc + uicst (8)

Here, θ̂, Xit, γs, αt, and τc are defined as in equations (5) and (6). In particular, the

college performance equation includes high school fixed effects γs but does not account for

time-varying high school characteristics such as the share of students in the prior graduating

class attending each college in the UNC system. This exclusion restriction implies that time-

varying within-high school peer enrollment patterns impact students’ college choices, but do
25The Lee (1983) selection correction allows for any parametric distribution of errors in the first stage

selection equation and nests the canonical Heckman selection correction when the first stage is binary with
normally distributed errors (Bourguignon et al., 2007). Appendix I shows that the results are qualitatively
similar when applying the selection correction method from Dahl (2002), which requires a less restrictive
assumption on the error structure but does not nest the Heckman selection correction.
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not impact college performance.26 Appendix H demonstrates that the results are robust to

using an alternative set of instruments, indicators for which college is nearest to a student’s

high school, conditional on the distance to the nearest college.

The outcome College_Performanceicst is observed only when a student chooses some

college choice c in the UNC system. I omit students at UNC School of the Arts from the

college performance equations. UNC School of the Arts offers only Bachelor of Fine Arts

degrees and Bachelor of Music degrees; therefore, college performance measures are not

directly comparable to performance at the other comprehensive academic institutions in the

UNC System.

I make the standard conditional independence assumption: θ̂ ⊥ u | X, s, t, c. I assume

that u follows a normal distribution with mean zero and that the first stage nested logit error

terms ηc follow a generalized extreme value (GEV) distribution. The crucial distributional

assumption is that the joint distribution of (u, Jϵc(ϵc | Γ)) does not depend on Γ for any c

corresponding to a college in the UNC system, where Γ is the information set of covariates

and coefficient estimates from the nested logit selection equation. ϵc is defined based on the

selection equation, such that choice c is chosen when ϵc < 0. J is a function of the CDF of

ϵc.27 This distributional assumption implies that the correlation between unobservable char-

acteristics driving the choice of alternative c against any other alternative and unobservable

characteristics driving college performance takes the same sign across all colleges c.

The distributional assumptions are consistent with the generalized Roy model of Willis

and Rosen (1979), which posits that individuals select the college which yields the highest

life cycle utility. The utility maximizing college is not necessarily the college performance

maximizing college due to nonpecuniary preferences and the imperfect mapping between

college performance and lifetime earnings. However, because those with larger benefits to

attending a particular college have a higher probability of being observed in that college,

the Roy model implies that unobservable characteristics driving the choice of college c and

unobservable characteristics driving college performance will be positively correlated at each
26This exclusion restriction provides exogenous variation in students’ propensities to attend college and

to attend each specific college in the data, so that identification in the Lee selection correction model is not
based solely on nonlinearities in the nested logit selection equation.

27Let Fϵc be the CDF of ϵc. Then, Fϵc(0 | Γ) = Pc and Jϵc(ϵ | Γ) = Φ−1(Fϵc(ϵ | Γ)).
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college c.

Under these assumptions, consistent estimates of π1English and π1Math can be obtained

using the following procedure. First, I use the nested logit model estimates to obtain selection

terms sc corresponding to each college in the UNC system, as a function of the nested logit

choice probabilities Pc = Pc|4-year collegeP (4-year college).

sc =
ϕ(Jϵc(0 | Γ))
Fϵc(0 | Γ)

=
ϕ(Φ−1(Pc))

Pc

(9)

I then estimate the college performance equation using an OLS regression, controlling

for selection terms sc to account for cross-college differences in selection.28

College_Performanceicst = π0 + π1Englishθ̂English−t + π1Mathθ̂Math−t + π2Xit

+ γs + αt + τc +
∑
c

πc1(enroll_in_c)sc + uicst (10)

Appendix G demonstrates that the lagged enrollment instruments are highly predictive

of enrollment at each college in the UNC system. In particular, coefficient estimates reveal

that a student is significantly more likely to attend a particular college if a higher share of

students in the prior cohort of their high school attended that college. Recent work classifies

shift-share style instruments as leveraging either exogenous shifts or exogenous shares of

a particular variable (Borusyak et al., 2025). This instrument leverages exogenous shifts

in college enrollment; while high schools with high enrollment at specific colleges are not

randomly assigned, within-high school college enrollment patterns are subject to plausibly

exogenous changes over time.

Due to the underlying selection problem, it is not possible to directly test the exclu-

sion restrictions in this model, which require that lagged within-high school enrollment at

each college in the UNC system has no effect on college performance. Regressing the lagged

enrollment instruments directly on college performance measures could yield significant coef-

ficients even if there is no direct relationship, because the instruments shift selection into the
28Appendix G demonstrates that the results are qualitatively similar when probit regressions are estimated

for binary outcomes. Although results are robust to different functional form assumptions on the college
performance equation, the Lee (1983) selection correction method is a “logit-OLS two-stage estimation
method.”
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observed college performance data. Instead, it is typical to test the relationship between the

instruments and a student achievement measure that is observed regardless of whether stu-

dents enroll in college (Garlick and Hyman, 2022). Appendix G demonstrates that lagged

within-high school enrollment at each college in the UNC system is not significantly pre-

dictive of 12th grade GPA or composite ACT score, providing evidence in support of the

exclusion restriction.

4.3 Results

Figure 4 presents the estimated coefficients of ACT score value added on enrollment in

4-year and 2-year colleges, relative to the outside option of no college. Coefficients indicate

that math ACT score value added significantly increases enrollment in the two 4-year state

flagship universities, UNC Chapel Hill and NC State, and significantly decreases enrollment

in 2-year colleges. Impacts on the propensity to enroll in less-selective 4-year colleges, relative

to the outside option of no college, are not significantly different from 0. Impacts of English

ACT score value added are qualitatively similar but smaller in magnitude and less precisely

estimated.
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Figure 4: Impacts of ACT Score Value Added on College Enrollment
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Coefficients standardized to reflect the effects of a 1σ increase in teacher value added.
Error bars represent 95% confidence intervals.
Coefficient estimates with standard errors reported in Appendix G.
Coefficients normalized relative to no college enrollment.
Standard errors bootstrapped with 100 replications to adjust for two-stage nested logit estimation procedure.
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To summarize the magnitude of effects on 2-year and 4-year college enrollment, I calculate

for each student the predicted probability of college enrollment when assigned to a teacher

with average ACT score value added versus a teacher with ACT score value added one

standard deviation above the mean. Moving from a math teacher with average ACT score

value added to a math teacher with ACT score value added one standard deviation above the

mean increases the probability of 4-year college enrollment by 1.23 percentage points (7%

relative to the full sample 4-year enrollment rate) and decreases the probability of 2-year

college enrollment by 1.53 percentage points (4% relative to the full sample 2-year enrollment

rate). An analogous change in English teacher value added increases the probability of 4-year

college enrollment by 0.39 percentage points (2%) and decreases the probability of 2-year

college enrollment by 0.30 percentage points (< 1%).

Due to the logit structure of the college enrollment equation, the marginal effects of ACT

score value added on college enrollment will vary with student characteristics. In particular,

the shape of the logit curve implies that students’ college enrollment choices will be more

responsive to changes in ACT score value added at moderate lagged achievement levels. This

property of the logit model is conceptually appealing: Students with very low lagged achieve-

ment levels may be less responsive on the margin of 4-year college enrollment, because many

of these students will not be qualified for 4-year college admission regardless of achievement

gains made in 11th grade. Conversely, students with very high lagged achievement levels

may be less responsive because their decision to apply to college is made prior to 11th grade

and their achievement levels have already exceeded the threshold required for 4-year college

admission. Figure 5 plots the difference in predicted 4-year college enrollment probability

when assigned to a teacher with average ACT score value added versus a teacher with ACT

score value added one standard deviation above the mean, averaged over students in each

ventile of the subject-specific lagged achievement distribution.29 The impacts of math ACT

score value added on 4-year college enrollment are largest for students between the 50th

and 75th percentiles of the lagged achievement distribution, who are likely on the margin of

qualifying for 4-year college admission.

29I measure lagged achievement using Algebra 1 EOC scores for math value added and English 2 EOC
scores for English value added.
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Figure 5: Heterogeneous Impacts of ACT Score Value Added on College Enrollment

To summarize the magnitude of effects on 4-year college selectivity, I calculate for each

student the predicted probability of enrollment in each college c when assigned to a teacher

with average ACT score value added versus a teacher with ACT score value added one stan-

dard deviation above the mean. I use these estimates to form an “expected acceptance rate”

weighted by predicted college-specific choice probabilities, shown in equation (11).30 Moving

from an English teacher with average ACT score value added to an English teacher with ACT

score value added one standard deviation above the mean decreases the expected acceptance

rate of a student’s enrolled college, conditional on 4-year college enrollment, by 1 percentage

point. The same change in math teacher value added decreases expected acceptance rate by

0.05 percentage points. Decreases in expected acceptance rate suggest that students exposed

to teachers with high ACT score value added attend more selective, higher quality 4-year
30Because I do not observe enrollment in specific private and out-of-state universities, I do not observe the

acceptance rate for private and out-of-state enrollment. Therefore, I omit private and out-of state universities
from the expected acceptance rate calculation and divide equation (11) by 1 − Pi17st where c = 17 indexes
private and out-of-state university enrollment.
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colleges on average, although the magnitude of the difference is relatively small.

Expected Acceptance Rateicst =
16∑
c=1

P̂icst(θ̂English−t, θ̂Math−t)× Acceptance Ratec (11)

Figure 6 plots the difference in 4-year college selectivity, measured using expected ac-

ceptance rate, when assigned to a teacher with average ACT score value added versus a

teacher with ACT score value added one standard deviation above the mean, averaged over

students in each ventile of the subject-specific lagged achievement distribution who attended

college.31 I find that the impacts of ACT score value added on 4-year college selectivity are

largest for students above the 90th percentile of the lagged achievement distribution, who are

likely on the margin of qualifying for admission to the most selective flagship universities in

the UNC System.

Figure 6: Heterogeneous Impacts of ACT Score Value Added on College Enrollment

Appendix G presents the estimated effects of ACT score value added on enrollment in
31I measure lagged achievement using Algebra 1 EOC scores for math value added and English 2 EOC

scores for English value added.
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specific 4-year colleges, separating the College of Engineering at NC State University from

the rest of NC State University. Unlike students at other institutions in the UNC Sys-

tem, freshman applicants to NC State are admitted specifically to one of the university’s

twelve colleges based on the intended major indicated on their application. In particular,

students intending to major in engineering are admitted separately to the College of Engi-

neering, suggesting that math ACT score value added may have different effects on College

of Engineering enrollment. Indeed, I find a positive effect of math ACT score value added

on enrollment in the College of Engineering at NC State, relative to the outside option of

enrollment in UNC Chapel Hill.

Table 7 presents estimates from the college performance equation with and without the

selection correction. Both selection-corrected and reduced-form estimates indicate that ACT

score value added improves a host of college performance measures, including freshman year

GPA in both STEM and non-STEM courses, enrollment in a college algebra course,32 dropout

during or after freshman year, and college completion within 5 years of initial enrollment.

Compared to reduced-form estimates, effects of math ACT score value added on freshman

year GPA, college algebra course-taking, and freshman year dropout are larger in magni-

tude. This suggests that ACT score value added shifts “marginal” students at higher risk

of poor college performance into enrollment at colleges for which they may be academically

underprepared. Therefore, the reduced-form relationship between ACT score value added

and college performance is biased toward 0. Multiple empirical results confirm the presence

of selection bias in reduced-form estimates. First, an F -test demonstrates that the selection

correction terms enter the college performance equation significantly. Second, coefficients

on several measures of student achievement in the college performance equation increase in

magnitude after applying the correction procedure. Results are shown in Appendix G.

After correcting for selection, coefficient estimates indicate that a one standard deviation

increase in math ACT score value added increases freshman GPA by 0.027 GPA points,
32I use enrollment in a college algebra course to proxy for remedial math course placement, although

classifications of math courses as remedial, credit acceptance policies, and math course requirements for
degree completion vary across institutions within the UNC system. Several institutions use math ACT
scores as one metric to determine students’ initial math placement (see, for example, the math placement
policy at UNC Charlotte: https://pages.charlotte.edu/math-placement/faq/). Thus, exposure to
teachers with high math ACT score value added could allow students to place out of remedial math courses
and more easily complete degree requirements on time.
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3% of a standard deviation. The impact of math ACT score value added on GPA is larger

for STEM courses. A one standard deviation increase in math ACT score value added

reduces college algebra course-taking by 2.9 percentage points and reduces dropout by 0.05

percentage points. Effects on college algebra course-taking and dropout translate to declines

of 8% and 6%, respectively, relative to the full sample means. Effects of math ACT score

value added on 5-year college completion rates are positive but statistically insignificant.33

While the effects of English ACT score value added on college performance are less precisely

estimated due to the smaller variance in English ACT score value added, they are largely

similar in magnitude to the effects of math ACT score value added. Notable exceptions

include freshman year STEM GPA and enrollment in a college algebra course, outcomes

that likely depend more heavily on skills taught by math teachers and are not impacted

by English ACT score value added.34 These results suggest that subject-specific ACT score

value added measures capture not only improvements in student motivation and other general

academic skills relevant to the college classroom, but also the accumulation of subject-specific

cognitive skills.

33A 5-year completion rate is unavailable for the 2018 ACT-taking cohort, the youngest cohort in my
sample, decreasing sample size and statistical power for this outcome.

34Appendix G demonstrates that math ACT score value added has positive effects on STEM major choice,
further suggesting a role for subject-specific skill accumulation.
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Table 7: Impacts of ACT Score Value Added on College Performance

GPA STEM GPA Non-STEM GPA College Algebra Dropout Completion
A. No Correction
English ACT VA 0.0221 0.00522 0.0200 0.00901 -0.00774 0.00400

(0.0186) (0.0281) (0.0197) (0.0123) (0.00677) (0.0120)
Math ACT VA 0.0262∗∗∗ 0.0276∗∗ 0.0253∗∗∗ -0.0276∗∗∗ -0.00458∗ 0.00446

(0.00713) (0.0107) (0.00741) (0.00489) (0.00274) (0.00491)
B. Correction
English ACT VA 0.0233 0.00872 0.0206 0.00809 -0.00844 0.00307

(0.0185) (0.0247) (0.0182) (0.00997) (0.00717) (0.0143)
Math ACT VA 0.0272∗∗∗ 0.0292∗∗∗ 0.0261∗∗∗ -0.0287∗∗∗ -0.00494∗ 0.00399

(0.00742) (0.00998) (0.00730) (0.00416) (0.00253) (0.00487)
Observations 69661 49558 68060 73559 73559 57138
Mean 2.981 2.786 3.114 0.364 0.0863 0.707
R2 (No Correction) 0.261 0.241 0.255 0.269 0.0432 0.146
R2 (Correction) 0.262 0.243 0.256 0.274 0.0437 0.148
Panel A: standard errors in parentheses, clustered at the high school level
Panel B: standard errors in parentheses, bootstrapped with 100 replications to adjust for two-stage selection correction procedure
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Coefficients standardized to reflect 1σ increase in value added

Taken together, my results suggest that 11th grade teachers have significant scope to

influence the accumulation of skills which are transferable from high school to college class-

rooms. Assignment to 11th grade teachers with high ACT score value added has important

implications for student success in college, both by shifting college enrollment patterns to-

ward selective 4-year universities and by directly improving student performance, conditional

on whether and where students choose to pursue postsecondary education.

4.4 Decomposing Completion Effects

I have shown that assignment to a teacher with high ACT score value added has posi-

tive effects on three channels impacting the probability a student completes a 4-year college

degree within 5 years of high school graduation. First, ACT score value added increases

on-time enrollment in 4-year colleges. Second, ACT score value added increases enrollment

in selective colleges with higher on-time completion rates, conditional on 4-year college en-

rollment. Third, ACT score value added directly improves student performance in college,

conditional on whether and where a student enrolls.

In this analysis, I decompose the overall effect of ACT score value added on college
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completion, unconditional on college enrollment, into three channels as follows:

P (4-year college completion) =
(

15∑
c=1

P (complete college | c)Pc|4-year college

)
P (4-year college)

(12)

Here, c indexes colleges,35 and Pc|4-year college is the probability of enrolling in college c

conditional on 4-year college enrollment. Each component of equation (12) can be predicted

as a function of ACT score value added. I predict P̂ (complete college | c) at each college c

using estimates from the college performance equation (10).36 I predict P̂c|4-year college using

estimates from the second stage nested logit equation (5). I predict P̂ (4-year college) using

estimates from the nested logit equation (6).

I generate each of these predicted probabilities for the full sample of students, including

students who do not enroll in a 4-year college, to generate a counterfactual 4-year college

completion rate.37 I hold all other covariates at their true values and calculate counterfactual

probabilities when ACT score value added equals 0 (the mean) versus 1 (one standard

deviation above the mean). I repeat the exercise separately for English value added, holding

math value added at its true values, and for math value added, holding English value added

at its true values.

I substitute these counterfactual probabilities into equation (12) to calculate the differ-

ence in counterfactual 4-year college completion rate when students are assigned to a teacher

with average ACT score value added versus ACT score value added one standard deviation

above the mean. I find that a one standard deviation increase in English ACT score value

added increases the predicted full sample 4-year college completion rate by 0.43 percentage

points, while a one standard deviation increase in math ACT score value added increases

the predicted college completion rate by 1.16 percentage points.

To decompose the total change in predicted 4-year college completion into three chan-
35Because I do not include private and out-of-state colleges and UNC School of the Arts in my college

performance analysis, I omit these college from the completion rate summation and divide equation (12) by
1− Pi16st − Pi17st where c = 16 indexes UNC School of the Arts enrollment and c = 17 indexes private and
out-of-state college enrollment. Both probabilities can be predicted a function of ACT score value added
analogously to the other components of equation (12).

36I hold selection correction terms fixed when predicting counterfactual values of P̂ (complete college | c)
as a function of ACT score value added.

37I omit students from the 2018 ACT-taking cohort because a 5-year completion rate is unavailable.
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nels, I repeat the exercise allowing only one channel to vary at a time. First, I allow

P̂ (4-year college) (channel 1) to vary when value added equals 0 versus 1, holding the other

two predicted probabilities fixed at the true covariate values. Second, I allow P̂c|4-year college

(channel 2) to vary when value added equals 0 versus 1, holding the other two predicted prob-

abilities fixed at the true covariate values. Third, I allow P̂ (complete college | c) (channel

3) to vary when value added equals 0 versus 1, holding the other two predicted probabilities

fixed at the true covariate values. To calculate the share of the completion effect explained

by each channel, I divide the channel-specific changes in completion by the total change in

completion when allowing all three channels to vary. The residual share can be explained

by interactions between the three channels of interest.38

Figure 7 demonstrates that increases in 4-year college enrollment explain the largest share

of the completion effect. Roughly 47% of the effect of English ACT score value added on

4-year college completion and 68% of the effect of math ACT score value added on college

completion is driven by increases in 4-year college enrollment, with the remainder divided

between changes in college choice and improvements in college performance.

I next repeat the decomposition exercise among students with different levels of lagged

achievement, with results shown in Figures 8 and 9. I measure lagged achievement using

terciles of the Algebra 1 EOC score distribution for math value added and terciles of the

English 2 EOC score distribution for English value added. The total effects of both English

and math ACT score value added on 4-year college completion are smallest among stu-

dents with low lagged achievement (tercile 1) and largest among students with high lagged

achievement (tercile 3). Increases in 4-year college enrollment explain a larger share of the
38Let f represent P̂ (complete college | c) as a function of value added v, g represent P̂c|4-year college, and h

represent P̂ (4-year college). Equation (12) can be written as

∆ =

15∑
c=1

[
fc(1)gc(1)h(1)− fc(0)gc(0)h(0)

]
=

15∑
c=1

[
(fc(1)− fc(0)) gc(v)h(v)︸ ︷︷ ︸

∆f

+ fc(v) (gc(1)− gc(0))h(v)︸ ︷︷ ︸
∆g

+ fc(v) gc(v) (h(1)− h(0))︸ ︷︷ ︸
∆h

+
(
fc(1)− fc(v)

)(
gc(1)− gc(v)

)
h(v) +

(
fc(1)− fc(v)

)
gc(v)

(
h(1)− h(v)

)
+ fc(v)

(
gc(1)− gc(v)

)(
h(1)− h(v)

)
+
(
fc(1)− fc(v)

)(
gc(1)− gc(v)

)(
h(1)− h(v)

)]
(13)
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completion effect among students with low lagged achievement, while changes in college

choice and improvements in college performance explain a larger share of the completion

effect among students with high lagged achievement. This is likely because students with

low lagged achievement are on the margin of enrolling in a 4-year college, while students with

high lagged achievement are on the margin of enrolling in selective colleges and performing

well in college coursework.

Figure 7: Completion Decomposition Analysis
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Figure 8: Completion Decomposition Analysis by Lagged English Achievement

Figure 9: Completion Decomposition Analysis by Lagged Math Achievement
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5 Conclusion

My results provide new evidence on the importance of high school teachers for students’

later life success. I find that teachers have significant scope to influence students’ life tra-

jectories during the transition years between high school and college, which coincide with

a critical period of adolescent development. Quantifying and investing in the multifaceted

contributions of teachers is a timely and policy-relevant concern, as declines in teacher sat-

isfaction have been accelerating in recent years (Kraft and Lyon, 2024).

Leveraging detailed administrative data from North Carolina, I provide novel estimates

of teacher value added on college admissions test scores or “ACT score value added.” Using a

nested logit model in which students choose whether to attend a 2-year or 4-year college and

which 4-year college to attend, I find positive impacts of ACT score value added on 4-year

college enrollment and selectivity.

I find that quasi-random assignment to a teacher with high value added on the ACT

test has positive impacts not only on ACT scores and college enrollment, but on a host

of college performance measures. Students assigned to English or math teachers with high

ACT score value added earn higher freshman college GPAs, are less likely to drop out during

or after freshman year, and are more likely to graduate within five years of initial college

enrollment. Moreover, students assigned to math teachers with high ACT score value added

earn higher freshman GPAs in STEM courses and are less likely to enroll in a remedial college

algebra course, suggesting an important role for subject-specific cognitive skill accumulation.

Positive impacts on college performance are robust to accounting for selection into enrollment

in specific colleges using a selection correction method from Lee (1983), suggesting that

improvements in college performance are driven by direct improvements in academic skills

in addition to changing patterns of college enrollment.

This paper speaks to the empirical literature and ongoing policy debate regarding the

use of college admissions tests in the United States college admissions process. During the

Covid-19 pandemic, test-optional policies increased rapidly in prevalence due to disruptions

in testing availability (Lovell and Mallinson, 2024). In recent years post-pandemic, colleges

and universities have reverted to a spectrum of admissions testing policies (Knox, 2024).

45



Prior research has demonstrated that complexity in the college application process creates

unnecessary barriers to college enrollment for low income students (Page and Scott-Clayton,

2016; Dynarski et al., 2023). Thus, it is crucial to understand the extent to which college

admissions test scores are a useful screening tool and, consequently, whether the direct and

indirect costs of admissions testing requirements are justified. Indeed, a long “validity” liter-

ature attempts to estimate the predictive power of admissions test scores for postsecondary

academic performance, finding mixed results (Rothstein, 2004; Westrick et al., 2019; Fried-

man et al., 2025; Sacerdote et al., 2025). I find that marginal increases in ACT scores,

induced by quasi-random shocks to teacher quality, are predictive of college performance,

suggesting that ACT scores are a useful measure of skills relevant to college coursework.

Taken together, my results suggest that ACT score value added captures college-relevant

skills with economically significant long-run benefits extending into adulthood. The role

of teachers in shaping children’s skill development during late adolescence thus merits fur-

ther attention. Future work should evaluate the impacts of high school teachers on other

dimensions of skill which improve college enrollment and performance, moving beyond tradi-

tional cognitive skill measures. I find evidence that the correlation between ACT score value

added and teacher value added on students’ school attendance is low. However, marginal im-

provements in attendance may not reflect noncognitive skills relevant to college enrollment

and performance, such as cooperation, persistence, or self-discipline. Future work should

also consider whether high school teachers impact college outcomes beyond academic per-

formance, such as college major and course choice. Quantifying the multifaceted effects of

teachers during adolescence can fill crucial gaps in our understanding of child development

and help children flourish during the transition to adulthood.
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Appendix

A Permutation Test of Random Teacher Assignment

I adapt a permutation-based balance test from Abrams et al. (2012) and Landon (2024).

This procedure addresses over-rejection of the null hypothesis in F -tests with a large num-

ber of fixed effects and relatively small within-cell sample sizes. I simulate the random

assignment of teachers to classrooms within school-cohort cells and calculate the standard

deviation of mean student 10th grade (lagged) absences, residualized on value added model

covariates, across the teachers in the sample. I then repeat the process 100 times, generat-

ing 100 simulated measures of dispersion capturing sampling variation in classroom average

ability under random teacher assignment. Finally, I compare the true standard deviation

of teacher-mean residualized student absences to the simulated distribution. For both math

and English, I find that the true standard deviation falls just outside the range of simulated

standard deviations, suggesting a limited role for student-teacher sorting in this setting after

accounting for value added model covariates.
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Figure A1: English Permutation Test

Figure A2: Math Permutation Test
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B North Carolina Course Scheduling Algorithm

Here, I briefly summarize the procedure used by North Carolina high schools to create

course assignment schedules. First, students select the courses they want to take and submit

a list of courses to their school. The school uses students’ course selections to determine how

many sections of each class will be offered, then assigns teachers to courses.

The crucial randomization step occurs using a program called “PowerSchool”, the official

student information system used statewide for storing and managing student data. The

school enters student course selections and course listings into PowerSchool, which uses an

algorithm to create the course schedule and assign students to courses with the objective

of minimizing scheduling conflicts. Finally, the remaining unavoidable scheduling conflicts

are resolved manually by guidance counselors who are familiar with students. This could

introduce a limited amount of non-randomness in the student-teacher assignment procedure.

Additional sources of non-randomness could include parent advocacy and course-specific time

constraints created by part-time teachers or other factors.
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C ACT Score Value Added Specification

Figures A3 and A4 present the empirical distributions and estimated standard deviations

of ACT score value added across several alternative specifications to equation (1). Tables

A1 and A2 demonstrate within-teacher correlations across value added measures. Removing

controls for which 11th grade math and English courses a student is enrolled in increases

the standard deviation of ACT score value added by only 0.0009 for English and 0.0114 for

math, suggesting a limited role for student-course sorting to drive the variance in ACT score

value added estimates after accounting for lagged student achievement. The larger change in

math value added after removing course controls is consistent with the wider variety of 11th

grade math course offerings relative to English, allowing for greater sorting. The within-

teacher correlations across value added specifications with and without course controls are

over 0.9 for both English and math teachers. Removing high school fixed effects increases

the standard deviation of ACT score value added by 0.0452 for English and 0.0353 for math,

suggesting that teacher quality varies substantially across high schools. Removing high

school fixed effects reduces the within-teacher correlation across value added specifications

to 0.190 for English teachers and 0.612 for math teachers, suggesting that high school fixed

effects play an important role in determining the ordinal ranking of teachers used throughout

my analysis.

Estimating equation (1) using OLS, rather than an empirical Bayes estimator, roughly

doubles the standard deviation of both English and math ACT score value added in the

absence of shrinkage accounting for measurement error. This suggests that the shrunken

empirical Bayes estimates used in my main specification are comparatively conservative,

speaking to concerns over the utility of empirical Bayes methods under nonrandom teacher

assignment (Guarino et al., 2015).

Additionally, I estimate English teacher value added on English ACT scores only, rather

than the average of English and reading ACT scores, given prior evidence finding that

the English and math sections of the ACT have the greatest predictive power for long-run

outcomes (Bettinger et al., 2013). I find that the standard deviation of English teacher

value added on English ACT scores is very similar to the main specification, and that the
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within-teacher correlation between the two specifications is 0.845. This result suggests that

including both English and reading ACT scores in the outcome of my main specification

leads to substantively similar results. To understand cross-subject spillovers, I estimate En-

glish teacher value added on math ACT scores and math teacher value added on English

and reading ACT scores. I find that the standard deviation of cross-subject English teacher

value added on math ACT scores is similar in magnitude to within-subject English teacher

value added, while cross-subject math teacher value added on English ACT scores is smaller

in magnitude than within-subject math teacher value added. One potential explanation for

larger cross-subject spillovers of English teachers is that English ACT score value added

reflects the accumulation of skills, such as critical reading, which are transferable across sub-

jects. Another potential explanation is that English teacher value added reflects even more

general human capital accumulation in the form of noncognitive skills such as motivation.

A more thorough discussion of cross-course spillovers, general human capital accumulation,

and mechanisms including noncognitive skill formation, is outside the scope of this paper

and should be explored in future work.39

Table A3 demonstrates that impacts on college enrollment, estimated using the two-

stage nested logit estimation procedure in equation (6) and standardized to represent a

one standard deviation change in value added, are qualitatively similar across specifications

but differ in magnitude. In particular, effects of ACT score value added on 4-year college

enrollment are much larger when value added is estimated using OLS without shrinkage,

suggesting that my main estimates are comparatively conservative. Table A4 demonstrates

that impacts on college dropout, estimated using equation (8) without selection correction,

are similar in both sign and magnitude across specifications. This suggests a limited role for

modeling assumptions in explaining the relationship between ACT score value added and

college performance.

39Cross-course spillover effects could, alternatively, reflect student-teacher sorting on unobserved ability
which improves performance across multiple sections of the ACT test.
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Figure A3: English ACT Score Value Added Specifications

Figure A4: Math ACT Score Value Added Specifications

60



Table A1: English ACT Score Value Added Correlations

(1) (2) (3) (4) (5) (6)
(1) Main 1
(2) Remove HS Course 0.939∗∗∗ 1
(3) Remove HS FE 0.190∗∗∗ 0.217∗∗∗ 1
(4) OLS 0.0169 0.0380∗∗∗ 0.223∗∗∗ 1
(5) English ACT Only 0.845∗∗∗ 0.834∗∗∗ 0.287∗∗∗ 0.0715∗∗∗ 1
(6) Math ACT 0.415∗∗∗ 0.389∗∗∗ 0.0868∗∗∗ 0.0150 0.421∗∗∗ 1
Observations 10545
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A2: Math ACT Score Value Added Correlations

(1) (2) (3) (4) (5)
(1) Main 1
(2) Remove HS Course 0.920∗∗∗ 1
(3) Remove HS FE 0.612∗∗∗ 0.623∗∗∗ 1
(4) OLS 0.274∗∗∗ 0.282∗∗∗ 0.282∗∗∗ 1
(5) English and Reading ACT 0.0828∗∗∗ 0.0537∗∗∗ -0.0884∗∗∗ -0.0754∗∗∗ 1
Observations 11276
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A3: Impacts of ACT Score Value Added on College Enrollment by Specification

(1) (2) (3) (4)
Main Remove HS Course Remove HS FE OLS

4-Year College Enrollment
Standardized English ACT VA 0.0855 0.0587 0.0391∗ 0.221∗∗∗

(0.0712) (0.0630) (0.0213) (0.0275)

Standardized Math ACT VA 0.0887∗∗∗ 0.0502∗∗ 0.0652∗∗∗ 0.150∗∗∗

(0.0222) (0.0211) (0.0163) (0.0189)

Inclusive Value Term 0.320∗∗∗ 0.319∗∗∗ 0.316∗∗∗ 0.356∗∗∗

(0.0313) (0.0315) (0.0319) (0.0344)
2-Year College Enrollment
Standardized English ACT VA -0.0121 0.0172 -0.0472∗∗ -0.0430∗

(0.0845) (0.0738) (0.0186) (0.0243)

Standardized Math ACT VA -0.101∗∗∗ -0.0928∗∗∗ -0.0785∗∗∗ -0.0600∗∗∗

(0.0230) (0.0224) (0.0163) (0.0193)
Observations 272096 272192 272124 317308
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A4: Impacts of ACT Score Value Added on College Dropout by Specification

(1) (2) (3) (4)
Main Remove HS Course Remove HS FE OLS

Standardized English ACT VA -0.00787 -0.00811 -0.00380 -0.00249
(0.00677) (0.00616) (0.00256) (0.00454)

Standardized Math ACT VA -0.00535∗ -0.00713∗∗∗ -0.00439∗∗ -0.00570∗∗

(0.00278) (0.00272) (0.00210) (0.00263)
Observations 78853 78853 78853 78853
Mean 0.0859 0.0859 0.0859 0.0859
R2 0.0350 0.0350 0.0350 0.0350
Standard errors in parentheses, clustered at the high school level
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Coefficients standardized to reflect 1σ increase in value added
No selection correction applied
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D ACT Score Value Added & Teacher Characteristics

Observable teacher characteristics predict approximately 1% of the variation in value

added estimates across teachers, as demonstrated in Table A5.

Table A5: ACT Score Value Added and Observable Teacher Characteristics

(1) (2)
English Math

Attended HBCU 0.00000538 0.000633
(0.000282) (0.000965)

Acceptance Rate of Bachelor’s Degree Institution 0.000375 -0.00142
(0.000454) (0.00168)

Years of Experience 0.00000548 0.000154∗∗∗

(0.00000782) (0.0000255)

Holds Graduate Degree -0.0000542 0.000442
(0.000142) (0.000532)

Female 0.000252 0.00275∗∗∗

(0.000165) (0.000504)

Completed Bachelor’s Degree in NC -0.0000490 -0.000978∗

(0.000153) (0.000575)
N 10076 9922
R2 0.00557 0.0170
Robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Coefficients from OLS regressions of value added on teacher characteristics, including controls for race/ethnicity.

I find no significant relationship between ACT score value added and teachers’ years of

experience. Figure A5 demonstrates suggestive evidence that math teachers with fewer than

10 years of experience have lower ACT score value added than more experienced teachers,

in line with prior evidence finding that value added increases early in teachers’ careers and

eventually plateaus (Bacher-Hicks and Koedel, 2023). Figures A6, A7, and A8 demonstrate

the relationship between ACT score value added and teachers’ educational credentials, as

measured by the selectivity of bachelor’s degree institution and graduate degree attainment.40

40I define graduate degree attainment to include master’s, doctorate, and other advanced degrees.
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I find no significant relationship between ACT score value added and teachers’ educational

credentials.

Figure A5: ACT Score Value Added and Teacher Experience
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Figure A6: ACT Score Value Added and College Selectivity
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Figure A7: English ACT Score Value Added and Graduate Degree Attainment
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Figure A8: Math ACT Score Value Added and Graduate Degree Attainment
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E Teacher Value Added Across Outcomes

E.1 Math Teachers

To test the relationship between ACT score value added and teacher value added on

traditional standardized test score measures, I estimate 9th grade math teacher value added

on 9th grade Algebra 1 end-of-course (EOC) test scores. The estimation sample includes

9th grade Algebra 1 test-takers from 2013-2018 who are matched with their 9th grade math

teachers.41 I construct a sample of 438,680 math students using similar procedures to those

used in the estimation of ACT score value added.42 I estimate the following value added

model using the Chetty et al. (2014a) estimation procedure, to maintain close comparability

with ACT score value added estimates.

EOC_Mathijst = β0 + β1EOGit−1 + β2EOGit−2 + β3Xit + θjTjt + αs + γt + ϵijst (14)

Here, EOC_Mathijst is the Algebra 1 end-of-course test score of student i assigned to

teacher j in school s and year t. EOGit−1 includes the student’s 8th grade lagged end-of-

grade (EOG) math, reading, and science test scores and EOGit−2 includes the student’s 7th

grade EOG math and reading test scores.43 Xit is the same vector of student-level controls

included in ACT score value added specifications. Tjt is a vector of 9th grade Algebra 1

teacher indicator variables, and θj are the parameters of interest.

The estimated standard deviation of teacher value added on Algebra 1 EOC test scores

is 0.1854, similar to prior estimates found by Jackson (2014, 2018) using an earlier sample

period and a similar specification with high school fixed effects.44 Among the 32.21% of
41By restricting to 9th grade Algebra 1 students, I effectively restrict my estimation sample to students

on the “standard track” in math. This is a similar restriction to Jackson (2014), which estimates a similar
measure of teacher value added on 9th grade Algebra 1 end-of-course test scores.

42On average, each Algebra 1 teacher is observed in 8 sections with 93 students over 2.76 years. I use
students’ fall 9th grade Algebra 1 course enrollments if they are enrolled in different fall and spring Algebra
1 courses and spring enrollments otherwise.

43Students with missing 8th grade math or reading end-of-grade test scores are excluded from the sample.
Missing 8th grade science end-of-grade test scores and missing 7th grade math and reading end-of-grade
test scores are imputed using the standardized mean of 0 and missing test score indicators are included as
covariates.

44Jackson’s preferred estimates include school-track fixed effects, leveraging a narrower source of identifying
variation by comparing students enrolled in the same set of core academic courses. Thus, Jackson’s main
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math teachers in my sample who taught both 11th grade students and 9th grade Algebra 1

students during the sample period, I find a positive but relatively low correlation of 0.0715

between ACT score value added and Algebra 1 EOC score value added. Figure A9 plots the

percentiles of Algebra 1 EOC score value added distribution against the mean percentiles of

the corresponding teachers’ ACT score value added estimates.

Figure A9: Algebra 1 EOC Score Value Added vs ACT Score Value Added Percentiles
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To test the relationship between ACT score value added and teacher value added on

noncognitive student outcomes, I estimate 11th grade math teacher value added on total

11th grade student absences. The estimation sample is the same as the math ACT score

value added estimation sample, excluding students with missing values for 10th or 11th grade

absences. I estimate the following value added model using the Chetty et al. (2014a) esti-

estimates report a smaller standard deviation of math teacher value added. The identification of school-track
fixed effects in the ACT score value added setting is infeasible due to divergence in student course-taking
patterns later in high school. Thus, I estimate teacher value added on Algebra 1 EOC test scores without
school-track fixed effects for comparability across ACT and EOC value added estimates.
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mation procedure, to maintain close comparability with ACT score value added estimates.

Absencesijst = β0+β1EOCit−1+β2Xit+β3Zit+β4Absencesit−1+ θjTjt+αs+γt+ ϵijst (15)

Here, Absencesijst is the total 11th grade absences of student i assigned to teacher j in

school s and year t45 and Absencesit−1 is the student’s total 10th grade absences. All other

variables are defined as in equation (1).

The estimated standard deviation of math teacher value added on student absences is

0.1708, larger than prior estimates found by Jackson (2018) using an earlier sample period

and a specification with school-track fixed effects, leveraging a narrower source of identifying

variation by comparing students enrolled in the same set of core academic courses.46 I find

a negative within-teacher correlation of -0.0701 between math ACT score value added and

noncognitive value added.47 Figure A10 plots the percentiles of noncognitive value added

distribution against the mean percentiles of the corresponding math teachers’ ACT score

value added estimates.

45I transform student absences by taking the log and adding 1, then standardizing log absences to have
mean 0 and standard deviation 1 within cohorts following Jackson (2018).

46Jackson’s preferred estimates incorporate student absences into an index of noncognitive behaviors along
with suspensions, GPA, and grade repetition. I focus on absences here because teacher value added on
GPA could plausibly reflect both cognitive and noncognitive skill development and teacher value added on
suspensions and grade repetition is likely less relevant to students on the margin of college enrollment.

47I find a correlation of -0.00524 between math EOC score value added and noncognitive value added
which is statistically indistinguishable from 0.
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Figure A10: Noncognitive Value Added vs Math ACT Score Value Added Percentiles
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To understand the relative predictive power of ACT score value added versus EOC score

and noncognitive value added for long-run outcomes, I estimate OLS regressions of ACT

score value added, EOC score value added, and noncognitive value added measures on an

indicator for on-time enrollment in 4-year colleges, conditioning on student-level covariates

and school and cohort fixed effects.48 I find that, without conditioning on high school GPA,

math EOC score value is more predictive of college enrollment than math ACT score value

added. After conditioning on high school GPA, however, math EOC score value added is no

longer predictive of college enrollment. This result suggests that the impact of math EOC

score value added on college enrollment operates through improvements in high school GPA,

while math ACT score value added has positive impacts not captured by GPA alone. Given

that ACT scores are observable to colleges during the admissions process while EOC scores

are not, this result underscores the distinct relevance of ACT score value added for college

outcomes.
48The student-level covariate vector Xit is defined in the value added estimation model shown in equation

(1).
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I find no significant relationship between noncognitive value added and college enrollment

in this sample.49 These results suggest that teacher value added on ACT scores is not only

distinct from traditional test scores value added measures and noncognitive value added

measures, but also an empirically relevant predictor of long-run postsecondary outcomes

despite the smaller variance in ACT score value added relative to other value added measures.

Table A6: Impacts of Math ACT, EOC, and Noncognitive Value Added on College Enroll-
ment

(1) (2) (3) (4)
Math ACT Score Value Added 0.0184 0.0122

(0.0249) (0.0243)

Math EOC Score Value Added 0.182∗∗∗ 0.177∗∗∗

(0.0627) (0.0605)

Noncognitive Value Added -0.00728 -0.00479
(0.0166) (0.0159)

N 48662 48662 48662 48662
R2 0.124 0.125 0.124 0.125
Standard errors in parentheses, clustered at the high school level
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Coefficients from OLS regression of 4-year college enrollment on value added with covariates
Coefficients standardized to reflect 1σ increase in value added
Sample: 11th grade ACT-takers with nonmissing 10th and 11th grade absences and Algebra 1 EOC scores
matched with 9th and 11th grade math teachers. Standard math track only (9th grade Algebra 1 EOC-takers)

49These results contrast with Jackson (2018), who finds that 9th grade teacher value added on an index of
noncognitive behaviors including absences, suspensions, GPA, and grade repetition predicts intended 4-year
college enrollment. This difference could be due to differences in noncognitive outcome measures, differences
between self-reported college intentions used in Jackson’s study and administrative college enrollment used in
my study, or underlying differences in the importance of noncognitive value added between 9th and 11th grade
teachers. In particular, it may be the case that improvements in the type of noncognitive skills captured by
student attendance are no longer sufficient to improve college attendance on the margin by the time students
reach 11th grade.
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Table A7: Impacts of Math Value Added on College Enrollment with GPA Control

(1) (2) (3) (4)
Math ACT Score Value Added 0.0213∗∗ 0.0213∗∗

(0.00873) (0.00908)

Weighted HS GPA at Graduation 0.281∗∗∗ 0.280∗∗∗ 0.281∗∗∗ 0.280∗∗∗

(0.00335) (0.00339) (0.00340) (0.00335)

Math EOC Score Value Added 0.0150 0.00736
(0.0319) (0.0329)

Noncognitive Value Added -0.000549 0.00185
(0.00720) (0.00732)

N 45655 45655 45655 45655
R2 0.347 0.347 0.347 0.347
Standard errors in parentheses, clustered at the high school level
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Coefficients from OLS regression of 4-year college enrollment on value added with covariates
Coefficients standardized to reflect 1σ increase in value added
GPA control is weighted composite high school GPA at graduation
Sample: 11th grade ACT-takers with nonmissing 10th and 11th grade absences and Algebra 1 EOC scores
matched with 9th and 11th grade math teachers. Standard math track only (9th grade Algebra 1 EOC-takers)
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E.2 English Teachers

I estimate English teacher value added analogously on 10th grade English 2 end-of-course

(EOC) test scores and noncognitive student outcomes. The EOC value added estimation

sample includes 10th grade English 2 test-takers from 2013-2018 who are matched with

English teachers. I construct a sample of 637,112 English students using similar procedures to

those used in the estimation of ACT score value added.50 I estimate the following value added

model using the Chetty et al. (2014a) estimation procedure, to maintain close comparability

with ACT score value added estimates.

EOC_Englishijst = β0+β1EOGit−2+β2EOGit−3+β3Xit+β4Sst+θjTjt+αs+γt+ϵijst (16)

Here, EOC_Englishijst is the English 2 end-of-course test score of student i assigned to

teacher j in school s and year t. EOGit−2 includes the student’s 8th grade lagged end-of-grade

(EOG) math and reading test scores and EOGit−3 includes the student’s 7th grade EOC math

and reading test scores.51 Xit is the same vector of student-level controls included in ACT

score value added specifications. Tjt is a vector of 10th grade English 2 teacher indicator

variables, and θj are the parameters of interest.

The estimated standard deviation of teacher value added on English 2 EOC test scores

is 0.0831, similar to prior estimates found by Jackson (2014, 2018) using an earlier sample

period and a similar specification with high school fixed effects.52 Among the 71.14% of

English teachers in my sample who taught both 11th grade students and 10th grade students
50On average, each English teacher is observed in 7 sections with 77 students over 2.54 years. I use

students’ fall 10th grade English course enrollments if they are enrolled in different fall and spring English
courses and spring enrollments otherwise.

51Students with missing 8th grade math or reading end-of-grade test scores are excluded from the sample.
Missing 8th grade science end-of-grade test scores and missing 7th grade math and reading end-of-grade
test scores are imputed using the standardized mean of 0 and missing test score indicators are included as
covariates.

52Jackson’s preferred estimates include school-track fixed effects, leveraging a narrower source of identifying
variation by comparing students enrolled in the same set of core academic courses. Additionally, Jackson
estimates the impacts of 9th grade English teachers on 9th grade English 1 EOC test scores, while I estimate
the impacts of 10th grade English teachers on 10th grade English 2 EOC test scores without a 1-year lagged
test score covariate due to differences in English EOC test timing during my sample period. Thus, Jackson’s
main estimates report a smaller standard deviation of English teacher value added. The identification of
school-track fixed effects in the ACT score value added setting is infeasible due to divergence in student
course-taking patterns later in high school. Thus, I estimate teacher value added on English 2 EOC test
scores without school-track fixed effects for comparability across ACT and EOC value added estimates.
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during the sample period, I find a positive but relatively low correlation of 0.0146 between

ACT score value added and English 2 EOC score value added. Figure A11 plots the per-

centiles of English 2 EOC score value added distribution against the mean percentiles of the

corresponding teachers’ ACT score value added estimates.

Figure A11: English 2 EOC Score Value Added vs ACT Score Value Added Percentiles
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To test the relationship between ACT score value added and teacher value added on

noncognitive student outcomes, I estimate 11th grade English teacher value added on total

11th student absences. The estimation sample is the same as the English ACT score value

added estimation sample, excluding students with missing values for 10th or 11th grade ab-

sences. I estimate the following value added model using the Chetty et al. (2014a) estimation

procedure, to maintain close comparability with ACT score value added estimates.

Absencesijst = β0+β1EOCit−1+β2Xit+β3Zit+β4Absencesit−1+ θjTjt+αs+γt+ ϵijst (17)

Here, Absencesijst is the total 11th grade absences of student i assigned to teacher j in
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school s and year t53 and Absencesit−1 is the student’s total 10th grade absences. All other

variables are defined as in equation (1).

The estimated standard deviation of math teacher value added on student absences is

0.1709, larger than prior estimates found by Jackson (2018) using an earlier sample period

and a specification with school-track fixed effects, leveraging a narrower source of identifying

variation by comparing students enrolled in the same set of core academic courses.54 I find a

negative within-teacher correlation of -0.0275 between English ACT score value added and

noncognitive value added.55 Figure A12 plots the percentiles of noncognitive value added

distribution against the mean percentiles of the corresponding English teachers’ ACT score

value added estimates.

Figure A12: Noncognitive Value Added vs English ACT Score Value Added Percentiles
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53I transform student absences by taking the log and adding 1, then standardizing log absences to have
mean 0 and standard deviation 1 within cohorts following Jackson (2018).

54Jackson’s preferred estimates incorporate student absences into an index of noncognitive behaviors along
with suspensions, GPA, and grade repetition. I focus on absences here because teacher value added on
GPA could plausibly reflect both cognitive and noncognitive skill development and teacher value added on
suspensions and grade repetition is likely less relevant to students on the margin of college enrollment.

55I find a correlation of 0.000277 between English EOC score value added and noncognitive value added
which is statistically indistinguishable from 0.
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To understand the relative predictive power of ACT score value added versus EOC score

and noncognitive value added for long-run outcomes, I estimate OLS regressions of ACT

score value added, EOC score value added, and noncognitive value added measures on an

indicator for on-time enrollment in 4-year colleges, conditioning on student-level covariates

and school and cohort fixed effects.56 I find that, with and without conditioning on high

school GPA, English EOC score value added is more predictive of college enrollment than

English ACT score value added. I find no significant relationship between noncognitive value

added and college enrollment in this sample. These results suggest that English teacher

value added on ACT scores is distinct from traditional test scores value added measures and

noncognitive value added measures, but may be a less quantitatively important predictor

of long-run postsecondary outcomes due to the smaller variance in ACT score value added

relative to other value added measures.

Table A8: Impacts of English Value Added on College Enrollment

(1) (2) (3) (4)
English ACT Score Value Added 0.0248 0.0188

(0.0276) (0.0277)

English EOC Score Value Added 0.0564∗∗∗ 0.0561∗∗∗

(0.0156) (0.0156)

Noncognitive Value Added -0.00657 -0.00678
(0.00935) (0.00927)

N 135145 135145 135145 135145
R2 0.0855 0.0866 0.0855 0.0867
Standard errors in parentheses, clustered at the high school level
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Coefficients from OLS regression of 4-year college enrollment on value added with covariates
Coefficients standardized to reflect 1σ increase in value added
Sample: 11th grade ACT-takers with nonmissing 10th and 11th grade absences and English 2 EOC scores
matched with 10th and 11th grade English teachers

56The student-level covariate vector Xit is defined in the value added estimation model shown in equation
(1).
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Table A9: Impacts of English Value Added on College Enrollment with GPA Control

(1) (2) (3) (4)
Standardized English ACT Value Added 0.0149 0.0130

(0.0120) (0.0119)

Weighted HS GPA at Graduation 0.282∗∗∗ 0.282∗∗∗ 0.282∗∗∗ 0.282∗∗∗

(0.00216) (0.00216) (0.00216) (0.00216)

English EOC Score Value Added 0.0157∗∗∗ 0.0156∗∗∗

(0.00509) (0.00510)

Noncognitive Value Added -0.00545 -0.00544
(0.00402) (0.00397)

N 126955 126955 126955 126955
R2 0.363 0.363 0.363 0.363
Standard errors in parentheses, clustered at the high school level
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Coefficients from OLS regression of 4-year college enrollment on value added with covariates
Coefficients standardized to reflect 1σ increase in value added
GPA control is weighted composite high school GPA at graduation
Sample: 11th grade ACT-takers with nonmissing 10th and 11th grade absences and English 2 EOC scores
matched with 10th and 11th grade English teachers
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F Data Appendix

F.1 Sample Restrictions

Figures A13 and A14 depict the loss of sample size resulting from each sample restriction,

leading to three final estimation samples: the English value added estimation sample, the

math value added estimation sample, and the college outcomes estimation sample.

Figure A13: Value Added Estimation Sample Restrictions

11th Grade Students, 2014-2018
n = 531, 410

11th Grade ACT-Takers, 2014-2018
n = 493, 582

Matched with English Teacher
n = 470, 962

Matched with Math Teacher
n = 461, 657

Non-Missing English/Reading ACT
n = 470, 244

Non-Missing Math ACT
n = 461, 349

Math Track Restriction
n = 378, 778

Non-Missing Student Covariates
n = 412, 678

Non-Missing Student Covariates
n = 339, 324

English Value Added
Estimation Sample

Math Value Added
Estimation Sample

77



Figure A14: College Outcomes Estimation Sample Restrictions

11th Grade ACT-Takers, 2015-2018
n = 399, 389

Matched with English and
Math Teacher VA Estimate

n = 294, 894

Non-Missing Student Covariates
n = 272, 096

College Outcomes
Estimation Sample

The sample is qualitatively similar after imposing sample restrictions. Table A10 demon-

strates that the characteristics of the full sample of 11th grade students are similar to the

characteristics of 11th grade students with non-missing ACT scores.
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Table A10: Student Summary Statistics by Sample

11th Graders ACT-Takers English VA Math VA College Outcomes
Mean Mean Mean Mean Mean
(SD) (SD) (SD) (SD) (SD)

Economically Disadvantaged 0.400 0.386 0.390 0.386 0.367
Female 0.500 0.507 0.505 0.512 0.511
Black 0.256 0.247 0.250 0.245 0.232
Hispanic 0.127 0.125 0.123 0.122 0.122
ACT Composite 18.59 18.61 18.51 18.47 18.83

(5.165) (5.160) (5.064) (4.804) (5.025)
ACT Math 19.01 19.03 18.97 18.86 19.18

(4.822) (4.820) (4.751) (4.478) (4.735)
ACT English+Reading Average 18.05 18.07 17.94 17.93 18.32

(6.001) (5.997) (5.876) (5.639) (5.839)
Math Teacher Match 0.911 0.937 1.000 1.000 1.000
English Teacher Match 0.921 0.946 1.000 1.000 1.000
Math and English Teacher Match 0.891 0.919 1.000 1.000 1.000
Intend 2-Year College 0.350 0.351 0.361 0.365 0.348
Intend 4-Year Private/Out-of-State 0.127 0.132 0.129 0.129 0.130
Enrolled in UNC On-Time 0.194 0.207 0.208 0.213 0.273
Freshman UNC GPA 2.961 2.960 2.950 2.932 2.968

(0.807) (0.801) (0.802) (0.803) (0.805)
Freshman UNC Dropout 0.0932 0.0920 0.0911 0.0927 0.0917
Graduated from UNC within 5 Years 0.708 0.708 0.704 0.693 0.707
Observations 531410 493582 412894 339249 272096
UNC GPA, dropout, graduation conditional on UNC enrollment

F.2 Administrative Data vs Self-Reported College Enrollment

To capture enrollment in colleges outside of the UNC system, I leverage high school grad-

uation survey data from the Graduate Data Verification System (also called the Graduate

Survey). The high school graduation survey overreports UNC system enrollment relative to

administrative data. While 34.52% of students report intending to enroll in a 4-year public

in-state institution, only 72% of those students (24.92% of the full sample) are present in

UNC system enrollment records during the summer or fall semester following high school

graduation, as shown in Table A11 (“on-time enrollment”). Table A12 demonstrates that

the high school graduation survey aligns more closely with administrative data on UNC en-

rollment when including delayed enrollment in addition to on-time enrollment. Table A13

demonstrates that students who report intending to enroll in a 4-year public in-state in-

stitution but are not present in UNC system enrollment records during the summer or fall

semester following high school graduation are more likely to be economically disadvantaged,
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Black, or Hispanic, and have lower ACT scores on average compared to students who report

intending to enroll in a 4-year public in-state institution and are present in UNC system

enrollment records during the summer or fall semester following high school graduation.

In the nested logit model, I aggregate survey categories as follows. “4-Year Private/Out-

of-State” includes “4-Year Private in North Carolina,” “4-Year Public Out-of-State,” and

“4-Year Private Out-of-State.” “2-Year” includes “2-Year Public in North Carolina,”, “2-

Year Private in North Carolina,” “2-Year Public Out-of-State,” and “2-Year Private Out-of-

State.” “No College” includes “Trade School in North Carolina,” “Trade School Out-of-State,”

“Employment,” “Military,” and “Other.” Students who enroll in the UNC System on time

but report a different intention in the survey (1.88% of the full sample) are classified within

the UNC System.
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Table A11: Alignment Between Graduate Survey and On-Time UNC System Enrollment

Enroll in UNC System (%))
No Yes Total

4-Year Public in North Carolina 9.596 24.92 34.52
4-Year Private in North Carolina 6.732 0.589 7.321
4-Year Public Out-of-State 3.401 0.134 3.535
4-Year Private Out-of-State 2.701 0.0635 2.765
2-Year Public in North Carolina 33.55 0.765 34.31
2-Year Private in North Carolina 0.347 0.0116 0.358
2-Year Public Out-of-State 0.744 0.0121 0.757
2-Year Private Out-of-State 0.0801 0.00210 0.0822
Trade School in North Carolina 0.636 0.00840 0.644
Trade School Out-of-State 0.151 0.000788 0.151
Employment 9.739 0.0827 9.821
Military 4.153 0.0386 4.192
Other 1.466 0.0777 1.544

Table A12: Alignment Between Graduate Survey and UNC System Enrollment by Fall 2023

Enroll in UNC System (%))
No Yes Total

4-Year Public in North Carolina 7.101 27.42 34.52
4-Year Private in North Carolina 5.633 1.688 7.321
4-Year Public Out-of-State 2.843 0.692 3.535
4-Year Private Out-of-State 2.290 0.475 2.765
2-Year Public in North Carolina 29.47 4.842 34.31
2-Year Private in North Carolina 0.297 0.0612 0.358
2-Year Public Out-of-State 0.680 0.0764 0.757
2-Year Private Out-of-State 0.0709 0.0113 0.0822
Trade School in North Carolina 0.613 0.0310 0.644
Trade School Out-of-State 0.145 0.00604 0.151
Employment 9.539 0.282 9.821
Military 3.968 0.223 4.192
Other 1.344 0.200 1.544
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Table A13: Student Summary Statistics by Survey and Admin Data Alignment

Not Aligned Aligned
Mean Mean
(SD) (SD)

Economically Disadvantaged 0.386 0.211
(0.487) (0.408)

Female 0.533 0.583
(0.499) (0.493)

Black 0.329 0.229
(0.470) (0.420)

Hispanic 0.129 0.062
(0.335) (0.241)

ACT Composite 18.91 22.38
(4.873) (4.675)

ACT Math 19.19 22.32
(4.645) (4.789)

ACT English+Reading Average 18.42 22.26
(5.687) (5.440)

Observations 36554 94938

F.3 College Performance Measures

Freshman GPA

All GPA measures are constructed using course-level grades on a 4.0 scale with maximum

value 4.33 and minimum value 0. Overall freshman GPA is the credit hour-weighted average

of course-level grades across all graded courses taken during a student’s first two semesters

of UNC system enrollment excluding summer terms. STEM and non-STEM freshman GPA

are defined analogously, restricting STEM GPA to courses with 2-digit Classification of

Instruction Programs (CIP) codes 03, 11, 14, 15, 26, 27, 40, 41, and 51 and restricting

non-STEM GPA to all other courses with non-missing CIP codes.57

57I classify 2-digit CIP codes, established by the National Center for Education Statistics (NCES), as
STEM or non-STEM using a method similar to Altonji et al. (2016) and Ransom (2021). STEM fields include:
natural resources and conservation, computer and information sciences and support services, engineering,
engineering technologies/technicians, biological and biomedical sciences, mathematics and statistics, physical
sciences, science technologies/technicians, and health professions and related clinical sciences.
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College Algebra

The UNC System does not have a common course numbering system for undergraduate

courses58 I define a college algebra course as any 100-level course which includes the word

“algebra” in the title. I measure college algebra course enrollment during any semester of

enrollment in the UNC system, not restricted to freshman year.

Dropout and Completion

Freshman dropout is defined as dropout after the first or second semester of UNC system

enrollment, excluding summer terms. Students are classified as dropouts if they are not

present in the UNC system data after two semesters, even if they return in future semesters.

Completion is defined as graduation from any institution in the UNC system within 5 years

of initial enrollment in the UNC system. In my sample, only 7% of students who enroll in the

UNC system on-time and graduate within 5 years transfer schools within the UNC system

between initial enrollment and graduation. Thus, the 5-year completion rate from any UNC

system institution (70.8%) is similar to the 5-year completion rate from the school where a

student initially enrolls (65.8%). A 5-year completion rate is unavailable for the youngest

cohort in my sample, decreasing sample size and statistical power for this outcome.

F.4 College Distances

I use annual high school location data (latitude and longitude) from the Common Core

of Data (CCD), matching each student with the location of their high school during the year

in which they took the ACT. I use 2015 college location data (latitude and longitude) from

the National Historical Geographic Information System. Distances from high schools to the

nearest colleges are geodetic distances in kilometers, measuring the length of the shortest

curve between two points along the surface of a spherical model of the Earth.59

58While the UNC System began working toward a “Common Numbering System” in 2020, during my
sample period the implementation had only been expanded to a small number of commonly taught, lower-
division courses.

59I calculate distances using the Stata package geonear.
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F.5 High School Courses, Tracks, and Classrooms

I define high school courses by aggregating 4-digit NC DPI course codes to account for

multiple versions of the same course and changes in course codes over time. Table A14

describes the mappings from 4-digit English and math course codes to high school courses

used as covariates in ACT score value added estimation. After completing Algebra 2/NC

Math 3, students can choose between several math courses. During my sample period, the

most common choices were Precalculus and Advanced Functions and Modeling. Advanced

Functions and Modeling is a less rigorous alternative to Precalculus.

Table A14: High School Course Definitions

Course Name Course Codes
English
11th Grade English 1023, 1033 (NC English III), 1A00 (AP Language)
Other English Course 1A01 (AP English Literature), 1I00, 1I01, 1I02, 1I03 (IB Language

A), all other course codes starting with 102 or 103 (electives)
Math
Algebra 2/NC Math 3 2024, 2034, 2053, 2300, 2301, 2309
Precalculus 2070, 2403
Advanced Functions 2025, 2403
Other Math Course All other course codes starting with 2

I define the standard math track as taking Algebra 2 or NC Math 3 in 11th grade. I

defined the advanced math track as taking Algebra 2 or NC Math 3 in 10th grade. I drop

all students who took Algebra 2 or NC Math 3 prior to 10th grade or after 11th grade from

my math ACT score value added estimation sample. This excludes very advanced students

and remedial students.

I define course levels using the last digit of 5-digit NC DPI course codes. The three levels

are honors-level (last digit 5), college-level (last digit 7, corresponding to an AP course, or

8, corresponding to an IB course), and standard-level (all other courses).

I define a high school classroom as the combination of school identifier, academic year,

course code, academic term (semester, trimester, or quarter), and course section identifier.
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G Supplemental Coefficient Estimates

Table A15 presents F -statistics from tests of joint instrument significance in equation (5),

demonstrating that the lagged enrollment instruments are highly predictive of enrollment at

each college in the UNC system. In particular, coefficient estimates reveal that a student

is significantly more likely to attend a particular college if a higher share of students in the

prior cohort of their high school attended that college.

Table A15: Testing Relevance of Lagged Enrollment Instruments

Outcome Equation F -Statistic
Appalachian State University 23.46
East Carolina University 83.60
Elizabeth City State University 16.12
Fayetteville State University 31.61
NC A&T University 34.84
NC Central University 6.154
UNC Asheville 16.24
UNC Charlotte 24.23
UNC Greensboro 29.02
UNC Pembroke 53.48
UNC Wilmington 85.32
Western Carolina University 27.24
Winston-Salem State University 17.46
NC State University 34.86
UNC School of the Arts 20.23
4-Year Private/Out of State 10.30
F -Statistics from joint tests of instrument significance in
multinomial logit model corresponding to equation (5).

Due to the underlying selection problem, it is not possible to directly test the exclusion

restrictions in this model, which require that lagged within-high school enrollment at each

college in the UNC system has no effect on college performance. Regressing the lagged

enrollment instruments directly on college performance measures could yield significant co-

efficients even if there is no direct relationship, because the instruments shift selection into

the observed college performance data. Instead, it is typical to test the relationship between

the instruments and a student achievement measure that is observed regardless of whether

students enroll in college (Garlick and Hyman, 2022). Table A16 demonstrates that lagged
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within-high school enrollment at each college in the UNC system is not significantly pre-

dictive of 12th grade GPA or composite ACT score, providing evidence in support of the

exclusion restriction.

Table A16: Exclusion Restriction

(1) (2)
GPA ACT

Lagged Appalachian State Enrollment Share -0.201 -1.119∗∗

(0.126) (0.490)
Lagged East Carolina Enrollment Share -0.224 -0.144

(0.148) (0.536)
Lagged Elizabeth City State Enrollment Share -0.0623 0.249

(0.143) (0.347)
Lagged Fayetteville State Enrollment Share -0.215 -0.147

(0.155) (0.537)
Lagged NC A&T Enrollment Share 0.0200 -0.0187

(0.0956) (0.246)
Lagged NC Central Enrollment Share 0.0750 0.346

(0.0832) (0.395)
Lagged NC State Enrollment Share 0.0986 0.348

(0.151) (0.470)
Lagged UNC Asheville Enrollment Share -0.0568 1.054

(0.260) (0.936)
Lagged UNC Wilmington Enrollment Share 0.0268 0.0155

(0.0724) (0.281)
Lagged UNC Chapel Hill Enrollment Share 0.262 0.676

(0.163) (0.554)
Lagged UNC Charlotte Enrollment Share -0.0988 -0.120

(0.0797) (0.272)
Lagged UNC Greensboro Enrollment Share -0.193∗ 0.655∗

(0.105) (0.352)
Lagged UNC Pembroke Enrollment Share 0.173 -0.458

(0.271) (0.607)
Lagged Western Carolina Enrollment Share 0.0258 -0.458

(0.192) (0.672)
Lagged Winston-Salem State Enrollment Share -0.108 1.254

(0.289) (0.793)
Lagged UNC School of the Arts Enrollment Share -0.583 -1.788

(0.982) (5.279)
Observations 179091 271581
F -Statistic 0.991 1.257
Standard errors in parentheses, clustered at the high school level
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A17 presents coefficients from the first stage of the two-stage nested logit estimation

procedure, corresponding to figure A15. Tables A18 and A19 presents coefficients from

the first stage of the two-stage nested logit estimation procedure, corresponding to figure

A16. Tables A20, A21, and A22 present college fixed effects, selection term coefficients, and

covariate coefficients, respectively, from the college performance equation, corresponding to

equation (10). Multiple empirical results confirm the presence of selection bias in reduced-

form estimates. First, an F -test demonstrates that the selection correction terms enter the

college performance equation significantly. Second, coefficients on several measures of student

achievement in the college performance equation increase in magnitude after applying the

correction procedure.

Tables A23 and A24 demonstrate that the results are qualitatively similar when probit

regressions are used to estimate the college performance equation for binary outcomes, in-

cluding enrollment in a college algebra course, dropout during or after freshman year, and

college completion within 5 years of initial enrollment. Figure A17 demonstrates the esti-

mated effects of ACT score value added on enrollment in specific 4-year colleges, separating

the College of Engineering at NC State University from the rest of NC State University.

I find a positive effect of math ACT score value added on enrollment in the College of

Engineering at NC State, relative to the outside option of enrollment in UNC Chapel Hill.

Table A25 demonstrates that math ACT score value added increases the likelihood that

a student intends to major in STEM during his or her first semester of college and the

likelihood of completing a STEM major. I classify majors as STEM (Science, Technology,

Engineering, and Math) using a method similar to Altonji et al. (2016) and Ransom (2021)

to aggregate 2-digit Classification of Instruction Programs (CIP) codes established by the

National Center for Education Statistics (NCES).60 I do not apply the selection correction

procedure to major choice results because the choice of college and the choice of major

are likely made jointly based on college-specific major availability. Thus, attempting to

disentangle the direct effects of ACT score value added on major choice from indirect effects

through college choice may not be informative. Future work should further explore the role

of high school teachers in students’ choice of colleges and majors.

60I classify the following CIP codes as STEM: 03, 11, 14, 15, 26, 27, 40, 41, and 51.
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Table A17: First Stage Nested Logit Coefficients

4-Year College Enrollment
Standardized English ACT Value Added 0.0855

(0.0507)

Standardized Math ACT Value Added 0.0887∗∗∗

(0.0227)

Inclusive Value Term 0.320∗∗∗

(0.0576)
2-Year College Enrollment
Standardized English ACT Value Added -0.0121

(0.0404)

Standardized Math ACT Value Added -0.101∗∗∗

(0.0193)
Observations 272096
Standard errors in parentheses, bootstrapped with 100 replications
to adjust for two-stage nested logit estimation procedure
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Coefficients standardized to reflect 1σ increase in value added

Figure A15: Impacts of ACT Score Value Added on College Enrollment

Coefficients standardized to reflect the effects of a 1σ increase in teacher value added.
Error bars represent 95% confidence intervals.
Coefficient estimates with standard errors reported in Appendix G.
Coefficients normalized relative to no college enrollment.
Standard errors bootstrapped with 100 replications to adjust for two-stage nested logit estimation procedure.
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Table A18: Second Stage Nested Logit Coefficients, Part 1

Appalachian State
Standardized English ACT Value Added -0.376∗∗∗

(0.135)
Standardized Math ACT Value Added -0.251∗∗∗

(0.0612)
East Carolina
Standardized English ACT Value Added -0.197

(0.146)
Standardized Math ACT Value Added -0.277∗∗∗

(0.0618)
Elizabeth City State
Standardized English ACT Value Added -0.740

(0.454)
Standardized Math ACT Value Added -0.127

(0.193)
Fayetteville State
Standardized English ACT Value Added 0.101

(0.268)
Standardized Math ACT Value Added -0.311∗∗

(0.121)
NC A&T
Standardized English ACT Value Added -0.363∗∗

(0.173)
Standardized Math ACT Value Added -0.379∗∗∗

(0.0783)
NC Central
Standardized English ACT Value Added -0.160

(0.218)
Standardized Math ACT Value Added -0.366∗∗∗

(0.0952)
UNC Asheville
Standardized English ACT Value Added -0.593∗∗∗

(0.218)
Standardized Math ACT Value Added -0.0499

(0.0981)
UNC Charlotte
Standardized English ACT Value Added -0.229

(0.145)
Standardized Math ACT Value Added -0.181∗∗∗

(0.0633)
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Table A19: Second Stage Nested Logit Coefficients, Part 2

UNC Greensboro
Standardized English ACT Value Added -0.124

(0.164)
Standardized Math ACT Value Added -0.283∗∗∗

(0.0642)
UNC Pembroke
Standardized English ACT Value Added -0.484∗

(0.250)
Standardized Math ACT Value Added -0.279∗∗∗

(0.0963)
UNC Wilmington
Standardized English ACT Value Added -0.120

(0.145)
Standardized Math ACT Value Added -0.194∗∗∗

(0.0651)
Western Carolina
Standardized English ACT Value Added -0.0544

(0.190)
Standardized Math ACT Value Added -0.218∗∗∗

(0.0793)
Winston Salem State
Standardized English ACT Value Added -0.742∗∗∗

(0.239)
Standardized Math ACT Value Added -0.163∗

(0.0944)
NC State
Standardized English ACT Value Added -0.0893

(0.113)
Standardized Math ACT Value Added -0.0558

(0.0498)
UNC School of the Arts
Standardized English ACT Value Added -1.214∗∗

(0.531)
Standardized Math ACT Value Added -0.195

(0.203)
4 Year Private/Out of State
Standardized English ACT Value Added -0.251∗∗

(0.123)
Standardized Math ACT Value Added -0.147∗∗∗

(0.0515)
Observations 108448
Standard errors in parentheses, clustered at the high school level
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Coefficients standardized to reflect 1σ increase in value added
Coefficients normalized relative to more-selective UNC Chapel Hill
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Figure A16: Impacts of ACT Score Value Added on College Enrollment

Coefficients standardized to reflect the effects of a 1σ increase in teacher value added.
Error bars represent 95% confidence intervals.
Coefficient estimates with standard errors reported in Appendix G.
Coefficients normalized relative to no college enrollment.
Standard errors bootstrapped with 100 replications to adjust for two-stage nested logit estimation procedure.
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Table A20: College Fixed Effects from College Performance Equation

(1) (2) (3) (4) (5) (6)
GPA STEM GPA Non-STEM GPA College Algebra Dropout Completion

Appalachian State 0.266∗∗∗ 0.669∗∗∗ 0.135∗∗ 0.132∗∗∗ -0.00317 -0.0662
(0.0584) (0.0940) (0.0571) (0.0360) (0.0234) (0.0434)

East Carolina 0.0117 0.388∗∗∗ -0.0522 0.340∗∗∗ 0.00709 -0.113∗∗∗

(0.0583) (0.0838) (0.0614) (0.0442) (0.0207) (0.0366)

Elizabeth City State 0.153 0.0703 0.0651 0.267∗∗∗ 0.0537 -0.256∗∗

(0.153) (0.306) (0.159) (0.0951) (0.0711) (0.110)

Fayetteville State 0.0731 0.578∗∗ -0.155 0.198∗∗∗ 0.0462 -0.250∗∗∗

(0.149) (0.253) (0.147) (0.0679) (0.0579) (0.0851)

NC A&T 0.0232 0.323∗∗∗ 0.140∗ 0.155∗∗∗ 0.0501∗ -0.263∗∗∗

(0.0780) (0.0957) (0.0843) (0.0419) (0.0296) (0.0510)

NC Central -0.272∗∗ 0.0443 -0.310∗∗ 0.273∗∗∗ 0.0411 -0.277∗∗∗

(0.130) (0.165) (0.129) (0.0665) (0.0441) (0.0741)

UNC Asheville 0.277 0.631∗∗∗ 0.140 0.0618 0.00233 -0.244∗

(0.186) (0.232) (0.206) (0.0587) (0.0695) (0.125)

UNC Charlotte 0.0854 0.226∗∗ 0.165∗∗∗ 0.161∗∗∗ 0.0469∗∗ -0.0951∗∗

(0.0625) (0.0892) (0.0591) (0.0405) (0.0221) (0.0376)

UNC Greensboro 0.0981 0.244∗∗ 0.0796 -0.0285 0.0336 -0.107∗∗

(0.0736) (0.114) (0.0711) (0.0413) (0.0300) (0.0467)

UNC Pembroke -0.0223 0.478∗∗∗ -0.216∗∗ 0.179∗∗∗ 0.0420 -0.180∗∗∗

(0.0865) (0.102) (0.0988) (0.0602) (0.0315) (0.0579)

UNC Wilmington 0.223∗∗∗ 0.528∗∗∗ 0.110 0.731∗∗∗ 0.0285 -0.0374
(0.0776) (0.122) (0.0738) (0.0664) (0.0339) (0.0577)

Western Carolina 0.310∗∗∗ 0.823∗∗∗ 0.113 0.104∗∗ -0.0165 -0.136∗∗

(0.0959) (0.136) (0.0952) (0.0508) (0.0354) (0.0602)

Winston-Salem State 0.248∗∗ 0.631∗∗∗ 0.215∗ 0.242∗∗∗ -0.0969∗∗ -0.0302
(0.109) (0.146) (0.113) (0.0575) (0.0467) (0.0681)

NC State 0.211∗∗∗ 0.311∗∗∗ 0.268∗∗∗ 0.260∗∗∗ 0.00309 0.177∗∗∗

(0.0378) (0.0586) (0.0353) (0.0187) (0.0142) (0.0235)
Observations 69661 49558 68060 73559 73559 57138
Mean 2.981 2.786 3.114 0.364 0.0863 0.707
R2 0.262 0.243 0.256 0.274 0.0437 0.148
Standard errors in parentheses, clustered at the high school level
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A21: Selection Term Coefficients from College Performance Equation

(1) (2) (3) (4) (5) (6)
GPA STEM GPA Non-STEM GPA College Algebra Dropout Completion

Appalachian State 0.0159 -0.0416 0.0422∗ -0.0348∗∗ -0.00515 0.0286
(0.0253) (0.0408) (0.0253) (0.0170) (0.0102) (0.0194)

East Carolina 0.0225 0.00964 0.00759 0.00379 -0.00554 0.00668
(0.0264) (0.0359) (0.0280) (0.0191) (0.00900) (0.0158)

Elizabeth City State 0.0199 0.0934 0.000799 0.0278 0.00676 0.0126
(0.0535) (0.111) (0.0555) (0.0336) (0.0257) (0.0416)

Fayetteville State 0.0814 0.0918 0.0859 0.0865∗∗∗ 0.000693 -0.00490
(0.0578) (0.0984) (0.0574) (0.0266) (0.0236) (0.0334)

NC A&T 0.0765∗∗ 0.134∗∗∗ -0.0104 0.00850 0.00620 0.0385∗

(0.0338) (0.0408) (0.0374) (0.0184) (0.0135) (0.0221)

NC Central 0.149∗∗∗ 0.0970 0.175∗∗∗ 0.0367 -0.00303 0.0227
(0.0554) (0.0702) (0.0545) (0.0287) (0.0188) (0.0314)

UNC Asheville -0.0717 -0.112 -0.0415 -0.0641∗∗∗ 0.0131 0.0488
(0.0703) (0.0885) (0.0781) (0.0227) (0.0267) (0.0492)

UNC Chapel Hill 0.0967∗∗∗ 0.0970∗∗∗ 0.0865∗∗∗ 0.0805∗∗∗ -0.0180∗∗∗ 0.0479∗∗∗

(0.0174) (0.0293) (0.0155) (0.0121) (0.00660) (0.0106)

UNC Charlotte 0.115∗∗∗ 0.187∗∗∗ 0.0588∗∗ 0.0988∗∗∗ -0.0217∗∗ 0.0224
(0.0281) (0.0364) (0.0279) (0.0199) (0.00949) (0.0169)

UNC Greensboro 0.0272 0.0249 0.00143 0.0811∗∗∗ 0.00693 -0.0197
(0.0337) (0.0520) (0.0323) (0.0178) (0.0128) (0.0196)

UNC Pembroke 0.0387 -0.0105 0.0685∗ 0.0849∗∗∗ 0.00167 -0.0120
(0.0335) (0.0398) (0.0383) (0.0236) (0.0127) (0.0225)

UNC Wilmington 0.0383 -0.0311 0.0738∗∗ -0.118∗∗∗ -0.0159 0.0125
(0.0364) (0.0553) (0.0344) (0.0299) (0.0150) (0.0260)

Western Carolina -0.0266 -0.0947∗ 0.0235 0.00778 0.0111 0.00955
(0.0393) (0.0535) (0.0397) (0.0209) (0.0141) (0.0248)

Winston-Salem State 0.0136 -0.0149 -0.00933 0.0256 0.0657∗∗∗ -0.0706∗∗

(0.0472) (0.0632) (0.0495) (0.0242) (0.0212) (0.0280)

NC State 0.0243 0.119∗∗∗ -0.0213 -0.180∗∗∗ -0.0153∗∗ -0.0929∗∗∗

(0.0181) (0.0280) (0.0179) (0.00811) (0.00631) (0.0133)
Observations 69661 49558 68060 73559 73559 57138
Mean 2.981 2.786 3.114 0.364 0.0863 0.707
R2 0.262 0.243 0.256 0.274 0.0437 0.148
F -Statistic 4.495 4.971 4.030 56.25 2.298 7.211
Standard errors in parentheses, clustered at the high school level
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A22: Selected Covariate Coefficients from College Performance Equation

(1) (2) (3) (4) (5) (6)
GPA STEM GPA Non-STEM GPA College Algebra Dropout Completion

A. No Correction
Math 1 EOC 0.0586∗∗∗ 0.0996∗∗∗ 0.0498∗∗∗ -0.0110∗∗ -0.00589∗∗ 0.0136∗∗∗

(0.00775) (0.0110) (0.00781) (0.00456) (0.00286) (0.00519)

English 2 EOC 0.0934∗∗∗ 0.0702∗∗∗ 0.0958∗∗∗ -0.00311 -0.00464 0.0156∗∗∗

(0.00858) (0.0125) (0.00880) (0.00528) (0.00322) (0.00571)

Honors Math Course 0.103∗∗∗ 0.141∗∗∗ 0.103∗∗∗ -0.0287∗∗∗ -0.0132∗∗∗ 0.0317∗∗∗

(0.0102) (0.0148) (0.0104) (0.00596) (0.00381) (0.00691)

Honors English Course 0.109∗∗∗ 0.0779∗∗∗ 0.126∗∗∗ -0.000771 -0.0275∗∗∗ 0.0604∗∗∗

(0.0117) (0.0164) (0.0118) (0.00613) (0.00454) (0.00730)
B. Lee Correction
Math 1 EOC 0.0611∗∗∗ 0.102∗∗∗ 0.0513∗∗∗ -0.00968∗∗ -0.00593∗∗ 0.0140∗∗∗

(0.00775) (0.0110) (0.00785) (0.00453) (0.00287) (0.00519)

English 2 EOC 0.0941∗∗∗ 0.0719∗∗∗ 0.0955∗∗∗ -0.00657 -0.00495 0.0140∗∗

(0.00870) (0.0127) (0.00887) (0.00532) (0.00323) (0.00568)

Honors Math Course 0.108∗∗∗ 0.146∗∗∗ 0.106∗∗∗ -0.0284∗∗∗ -0.0132∗∗∗ 0.0315∗∗∗

(0.0105) (0.0153) (0.0107) (0.00589) (0.00387) (0.00694)

Honors English Course 0.119∗∗∗ 0.0893∗∗∗ 0.132∗∗∗ 0.00387 -0.0271∗∗∗ 0.0605∗∗∗

(0.0117) (0.0164) (0.0118) (0.00605) (0.00461) (0.00723)
Observations 69661 49558 68060 73559 73559 57138
Mean 2.981 2.786 3.114 0.364 0.0863 0.707
R2 (No Correction) 0.261 0.241 0.255 0.269 0.0432 0.146
R2 (Lee Correction) 0.262 0.243 0.256 0.274 0.0437 0.148
Panel A: standard errors in parentheses, clustered at the high school level
Panel B: standard errors in parentheses, bootstrapped with 100 replications to adjust for two-stage selection correction procedure
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Coefficients standardized to reflect 1σ increase in value added

Table A23: Impacts on College Performance without Correction, Probit

(1) (2) (3) (4) (5) (6)
GPA STEM GPA Non-STEM GPA College Algebra Dropout Completion

English ACT VA 0.0221 0.00522 0.0200 0.00660 -0.00763 0.00488
(0.0186) (0.0281) (0.0197) (0.0125) (0.00704) (0.0124)

Math ACT VA 0.0262∗∗∗ 0.0276∗∗ 0.0253∗∗∗ -0.0302∗∗∗ -0.00571∗∗ 0.00690
(0.00713) (0.0107) (0.00741) (0.00498) (0.00286) (0.00503)

Observations 69661 49558 68060 73261 73240 57106
Mean 2.981 2.786 3.114 0.365 0.0866 0.707
R2/Pseudo-R2 0.261 0.241 0.255 0.254 0.0699 0.128
Standard errors in parentheses, clustered at the high school level
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Columns (1)-(3): Coefficients from OLS regressions
Columns (4)-(6): Average marginal effects from probit regressions
Coefficients standardized to reflect 1σ increase in value added
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Table A24: Impacts on College Performance with Selection Correction, Probit

(1) (2) (3) (4) (5) (6)
GPA STEM GPA Non-STEM GPA College Algebra Dropout Completion

English ACT VA 0.0233 0.00872 0.0206 0.00771 -0.00811 0.00458
(0.0186) (0.0281) (0.0197) (0.0125) (0.00703) (0.0123)

Math ACT VA 0.0272∗∗∗ 0.0292∗∗∗ 0.0261∗∗∗ -0.0296∗∗∗ -0.00579∗∗ 0.00585
(0.00713) (0.0108) (0.00741) (0.00495) (0.00287) (0.00504)

Observations 69661 49558 68060 73261 73240 57106
Mean 2.981 2.786 3.114 0.365 0.0866 0.707
R2/Pseudo-R2 0.262 0.243 0.256 0.256 0.0703 0.130
Standard errors in parentheses, clustered at the high school level
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Columns (1)-(3): Coefficients from OLS regressions
Columns (4)-(6): Average marginal effects from probit regressions
Coefficients standardized to reflect 1σ increase in value added

Figure A17: Impacts of ACT Score Value Added on College Choice, Separating Engineering

Coefficients standardized to reflect the effects of a 1σ increase in teacher value added.
Error bars represent 95% confidence intervals
Coefficients normalized relative to more-selective UNC Chapel Hill.
Standard errors clustered at the high school level.
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Table A25: Impacts on STEM Major Choice without Correction

(1) (2)
Intended

STEM Major
Completed

STEM Major
English ACT VA 0.00591 -0.00303

(0.0117) (0.0166)

Math ACT VA 0.0154∗∗∗ 0.0223∗∗∗

(0.00523) (0.00571)
Observations 74068 40394
Mean 0.142 0.147
R2 0.142 0.127
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Coefficients standardized to reflect 1σ increase in value added
Completed major conditional on 5-year college completion
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H Alternative Instruments

My results are robust to replacing the lagged peer enrollment instruments with a set of

indicators for which college is nearest to a student’s high school, conditional on the distance

to the nearest college. This exclusion restriction implies that, proximity to a particular

college in the UNC system impacts the student’s college choice, but does not impact their

college performance. By comparing students who are equidistant to the nearest college,

the nearest college instruments ameliorate typical concerns with distance instruments. In

particular, prior work suggests that students who live further away from colleges in rural

or economically isolated areas are negatively selected on unobservable characteristics, such

as ability or family income, which impact college performance (e.g. Carneiro and Heckman,

2002).

Table A26 presents F -statistics from tests of joint instrument significance in equation

(5), demonstrating that the nearest college instruments are highly predictive of enrollment

at each college in the UNC system. In particular, coefficient estimates reveal that a stu-

dent is significantly more likely to attend the college nearest to their high school. Table

A27 demonstrates that the nearest college instruments are not significantly predictive of

12th grade GPA or composite ACT score, providing evidence in support of the exclusion

restriction.
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Table A26: Testing Relevance of Nearest College Instruments

Outcome Equation F -Statistic
Appalachian State University 52.70
East Carolina University 102.0
Elizabeth City State University 692.7
Fayetteville State University 659.2
NC A&T University 678.9
NC Central University 9.336
UNC Asheville 57.64
UNC Charlotte 94.91
UNC Greensboro 78.20
UNC Pembroke 98.67
UNC Wilmington 50.55
Western Carolina 111.7
Winston Salem State 650.5
NC State 23.92
UNC School of the Arts 6.218
4-Year Private/Out of State 28.68
F -Statistics from joint tests of instrument significance in
multinomial logit model corresponding to equation (5).
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Table A27: Exclusion Restriction

(1) (2)
GPA ACT

Nearest Appalachian State 0.0476∗ -0.661∗∗∗

(0.0278) (0.156)
Nearest East Carolina 0.0324 -0.489∗∗∗

(0.0244) (0.175)
Nearest Elizabeth City State -0.00168 -0.356∗∗

(0.0408) (0.161)
Nearest Fayetteville State 0.117∗∗∗ -0.290∗

(0.0368) (0.173)
Nearest NC A & T 0.0321 -0.425∗∗

(0.0357) (0.177)
Nearest NC Central 0.00389 -0.321∗

(0.0349) (0.170)
Nearest UNC Asheville 0.00729 -0.892∗∗∗

(0.0289) (0.166)
Nearest UNC Charlotte -0.0113 -0.843∗∗∗

(0.0211) (0.151)
Nearest UNC Greensboro 0.00793 -0.536∗∗∗

(0.0411) (0.183)
Nearest UNC Pembroke 0.0730∗∗ -0.819∗∗∗

(0.0347) (0.183)
Nearest UNC Wilmington 0.0478∗ -0.557∗∗∗

(0.0276) (0.163)
Nearest Western Carolina 0.0714∗ -0.520∗∗∗

(0.0372) (0.183)
Nearest Winston-Salem State 0.0518∗ -0.341∗

(0.0286) (0.174)
Nearest NC State 0.0455∗∗ -0.551∗∗∗

(0.0216) (0.153)
Nearest UNC School of the Arts 0.0338 -0.633∗∗∗

(0.0252) (0.170)
Observations 179091 271581
F -Statistic 2.169 5.722
Standard errors in parentheses, clustered at the high school level
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A28 presents selection-corrected estimates from the college performance equation

(10). Both selection-corrected and reduced-form estimates, shown in Table 7, indicate posi-

tive effects of ACT score value added on a host of college performance measures, including

freshman year GPA in both STEM and non-STEM courses, enrollment in a college algebra

course, dropout during or after freshman year, and college completion within 5 years of

initial enrollment. Compared to reduced-form estimates, effects of math ACT score value

added on freshman year GPA, college algebra course-taking, and freshman year dropout are

larger in magnitude. This suggests that ACT score value added shifts “marginal” students

at higher risk of poor college performance into enrollment at colleges for which they may be

academically underprepared. Therefore, the reduced-form relationship between ACT score

value added and college performance is biased downward.

Table A28: Impacts on College Performance, Nearest College Instruments

(1) (2) (3) (4) (5) (6)
GPA STEM GPA Non-STEM GPA College Algebra Dropout Completion

English ACT VA 0.0374∗∗ 0.0312 0.0314 0.00324 -0.00843 0.00256
(0.0187) (0.0287) (0.0195) (0.0127) (0.00674) (0.0125)

Math ACT VA 0.0281∗∗∗ 0.0406∗∗∗ 0.0250∗∗∗ -0.0285∗∗∗ -0.00536∗∗ 0.00633
(0.00755) (0.0109) (0.00773) (0.00488) (0.00267) (0.00488)

Observations 69661 49558 68060 73559 73559 57138
Mean 2.981 2.786 3.114 0.364 0.0863 0.707
R2 0.245 0.223 0.240 0.257 0.0333 0.134
Standard errors in parentheses, clustered at the high school level
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Coefficients standardized to reflect 1σ increase in value added
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I Dahl Selection Correction

Results are qualitatively similar when applying the semi-parametric Dahl (2002) selection

correction instead of the Lee (1983) selection correction. The main advantage of the Dahl

method is a less restrictive assumption on the error structure: Unlike Lee, Dahl allows for

the covariances between the outcome equation errors and the selection equation errors to

have any arbitrary sign (Bourguignon et al., 2007). Using the Dahl method, the college

performance equation becomes:

College_Performanceicst = π0 + π1Englishθ̂English−t + π1Mathθ̂Math−t + π2Xit

+ γs + αt + τc + µ({Pc}) + uicst (18)

Here {Pc} is the set of all choice probabilities from the nested logit selection equation.

Dahl’s method does not require imposing Lee’s index sufficiency assumption (that is, as-

suming only the first-best choice probability matters for selection). However, controlling for

all choice probabilities becomes computationally infeasible and leads to collinearity issues as

the number of choice probabilities increases. Typically, applications of the Dahl approach

assume that a small number of choice probabilities can form a sufficient statistic for selection.

Common choices include the first-best probability, the probability of the observed choice,

and one conceptually important probability, such as the probability of staying in the same

state in migration models. I use the first-best probability and the probability of choosing

a 2-year college, as additional choice probabilities are either collinear or not statistically

significant in the college performance equation.

The unknown function µ is typically approximated using an interacted polynomial expan-

sion. I compare specifications with second-order and third-order polynomials and interaction

terms as in Dahl (2002) and Ransom (2021). I use a quadratic polynomial without inter-

action effects, as cubic polynomial terms and interaction terms are either collinear or not

statistically significant in the college performance equation. I allow the unknown function µ

to differ across students based on their observed college choice.

Compared to reduced-form estimates (Table 7), effects of math ACT score value added

on freshman year GPA and freshman year dropout are slightly smaller after applying the
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Dahl correction, while they are slightly larger after applying the Lee correction (Table 7).

Coefficients on college algebra course-taking are larger in magnitude and coefficients on

college completion are smaller in magnitude after applying both the Dahl and Lee corrections.

Differences in selection-corrected vs reduced-form coefficients are relatively small for both

corrections.

Table A29: Impacts on College Performance with Dahl Selection Correction

(1) (2) (3) (4) (5) (6)
GPA STEM GPA Non-STEM GPA College Algebra Dropout Completion

English ACT VA 0.0226 0.00772 0.0204 0.00648 -0.00782 0.00164
(0.0186) (0.0282) (0.0197) (0.0124) (0.00680) (0.0122)

Math ACT VA 0.0224∗∗∗ 0.0226∗∗ 0.0218∗∗∗ -0.0287∗∗∗ -0.00454 0.00244
(0.00721) (0.0109) (0.00746) (0.00484) (0.00279) (0.00515)

Observations 69663 49559 68062 73561 73561 57140
Mean 2.981 2.786 3.114 0.364 0.0863 0.707
R2 0.265 0.247 0.259 0.277 0.0448 0.151
Standard errors in parentheses, bootstrapped with 100 replications to adjust for two-stage selection correction procedure
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Coefficients standardized to reflect 1σ increase in value added
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Table A30: Dahl Selection Term Coefficients from College Performance Equation

(1) (2) (3) (4) (5) (6)
GPA STEM GPA Non-STEM GPA College Algebra Dropout Completion

Appalachian State × P(First-Best) 0.591 0.860 0.282 0.598 -0.0176 0.215
(0.683) (1.041) (0.708) (0.453) (0.276) (0.520)

Eastern Carolina × P(First-Best) 0.307 0.317 0.505 0.532 -0.0954 -0.0884
(0.447) (0.673) (0.468) (0.368) (0.152) (0.268)

Elizabeth City State × P(First-Best) 1.022 0.310 1.389 -0.123 -0.911 0.556
(1.080) (2.316) (1.173) (0.656) (0.573) (0.808)

Fayetteville State × P(First-Best) -1.466 -0.588 -1.626 0.332 0.166 -0.0742
(1.505) (2.259) (1.529) (0.581) (0.553) (0.822)

NC A&T × P(First-Best) -0.00743 0.165 0.867 0.189 0.198 0.126
(0.900) (1.112) (1.006) (0.471) (0.337) (0.581)

NC Central × P(First-Best) -3.468∗ -2.037 -3.559∗ -1.357 -0.0321 -0.687
(1.957) (2.560) (1.963) (1.004) (0.728) (1.086)

UNC Asheville × P(First-Best) 0.737 4.550 -0.205 1.230 -0.160 -0.441
(3.193) (4.392) (3.512) (0.911) (1.235) (2.146)

UNC Chapel Hill × P(First-Best) -0.761∗∗∗ -0.986∗∗∗ -0.653∗∗∗ -0.344∗∗ 0.0395 -0.0202
(0.180) (0.318) (0.173) (0.145) (0.0612) (0.121)

UNC Charlotte × P(First-Best) -1.263∗∗∗ -1.868∗∗∗ -0.426 -0.881∗∗∗ 0.262∗ -0.444
(0.408) (0.516) (0.423) (0.322) (0.150) (0.286)

UNC Greensboro × P(First-Best) -0.139 -0.672 0.111 -1.432∗∗∗ 0.0596 0.198
(0.505) (0.835) (0.485) (0.285) (0.188) (0.377)

UNC Pembroke × P(First-Best) -1.241∗∗ -1.096∗∗ -1.490∗∗ -1.263∗∗∗ 0.317∗∗ -0.557∗

(0.556) (0.490) (0.622) (0.318) (0.146) (0.286)
UNC Wilmington × P(First-Best) -0.0810 -0.285 -0.102 2.572∗∗∗ -0.235 -0.409

(0.629) (1.124) (0.585) (0.521) (0.434) (0.492)
Western Carolina × P(First-Best) 0.108 1.086 -0.631 -0.0418 0.0345 -0.716

(0.802) (1.076) (0.850) (0.486) (0.308) (0.546)
Winston-Salem State × P(First-Best) 1.324 1.103 2.729∗∗ 0.736 -2.093∗∗∗ 2.390∗∗∗

(1.348) (2.031) (1.310) (0.798) (0.719) (0.835)
NC State × P(First-Best) -1.009∗∗∗ -1.152∗∗∗ -0.609∗∗ 1.575∗∗∗ 0.125 0.301∗

(0.272) (0.389) (0.279) (0.125) (0.0996) (0.175)
Appalachian State × P(2-Year) -0.188 0.185 -0.242 -0.312∗∗ 0.0139 -0.234

(0.230) (0.358) (0.237) (0.134) (0.0908) (0.159)
Eastern Carolina × P(2-Year) -1.753∗∗∗ -1.642∗∗∗ -1.766∗∗∗ 0.274∗∗ -0.00129 -0.492∗∗∗

(0.252) (0.329) (0.250) (0.133) (0.0773) (0.149)
Elizabeth City State × P(2-Year) -0.784 -3.414 -0.840 0.120 -0.338 -0.144

(0.723) (2.135) (0.761) (0.555) (0.463) (0.572)
Fayetteville State × P(2-Year) -1.414∗ -1.162 -1.582∗∗ 0.622∗∗ 0.00215 -0.333

(0.746) (1.082) (0.735) (0.305) (0.269) (0.463)
NC A&T × P(2-Year) -0.0291 0.0584 -0.667 -0.0663 0.169 -0.631∗∗

(0.422) (0.516) (0.439) (0.232) (0.157) (0.259)
NC Central × P(2-Year) -0.390 -0.670 -0.353 0.119 0.0586 -0.319

(0.539) (0.649) (0.526) (0.260) (0.199) (0.303)
UNC Asheville × P(2-Year) -0.484 -1.529∗∗ -0.309 -0.830∗∗∗ 0.126 -0.0352

(0.443) (0.721) (0.481) (0.159) (0.184) (0.382)
UNC Chapel Hill × P(2-Year) -0.934∗∗ -1.425∗∗ -1.292∗∗∗ 0.660∗∗∗ -0.335∗∗ 0.128

(0.467) (0.604) (0.378) (0.222) (0.159) (0.252)
UNC Charlotte × P(2-Year) -0.130 -0.381 -0.0497 0.877∗∗∗ -0.0120 -0.182

(0.278) (0.324) (0.296) (0.163) (0.0875) (0.156)
UNC Greensboro × P(2-Year) -1.247∗∗∗ -2.233∗∗∗ -1.084∗∗∗ 0.229 0.215∗∗ -0.335∗

(0.314) (0.417) (0.302) (0.148) (0.105) (0.191)
UNC Pembroke × P(2-Year) -0.672 -1.114∗ -0.414 -0.435∗ 0.198 0.164

(0.415) (0.626) (0.400) (0.236) (0.170) (0.265)
UNC Wilmington × P(2-Year) -0.0623 -0.679 0.205 0.744∗∗∗ -0.0831 0.279

(0.320) (0.503) (0.279) (0.241) (0.126) (0.225)
Western Carolina × P(2-Year) -1.466∗∗∗ -1.904∗∗∗ -1.229∗∗∗ 0.143 0.0537 -0.329

(0.308) (0.399) (0.330) (0.173) (0.123) (0.218)
Winston-Salem State × P(2-Year) -1.675∗∗∗ -2.608∗∗∗ -1.189∗∗∗ 0.0622 0.278∗ -0.980∗∗∗

(0.431) (0.572) (0.422) (0.258) (0.164) (0.278)
NC State × P(2-Year) -0.256 -0.601 -0.130 0.389∗∗∗ -0.00161 0.270

(0.265) (0.386) (0.267) (0.132) (0.102) (0.176)
Observations 69663 49559 68062 73561 73561 57140
Mean 2.981 2.786 3.114 0.364 0.0863 0.707
R2 0.265 0.247 0.259 0.277 0.0448 0.151
F -Statistic 6.787 7.138 5.434 28.07 2.398 5.437
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

F -statistic from joint test of significance of selection terms
Coefficients on quadratic terms omitted
Choice probabilities interacted with indicator for college attended
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